Computation of Generalized Nash EQuilibria with the GNE package

C. Dutang ${ }^{1,2}$
${ }^{1}$ ISFA - Lyon, ${ }^{2}$ AXA GRM - Paris,

Outline

1 GAP FUNCTION MINIZATION APPROACH

2 Fixed-point approach

3 KKT REFORMULATION

What is A NASH EQUILIBRIUM (NE)?

Some history,

- An equilibrium concept was first introduced by Cournot in 1838.
- But mathematical concepts had widely spread with The theory of games and economic behavior of von Neumann \& Morgenstern book in 1947.
- John F. Nash introduces the NE equilibrium concept in a 1949 seminar.

What is A NASH EQUILIBRIUM (NE)?

Some history,
■ An equilibrium concept was first introduced by Cournot in 1838.
■ But mathematical concepts had widely spread with The theory of games and economic behavior of von Neumann \& Morgenstern book in 1947.
■ John F. Nash introduces the NE equilibrium concept in a 1949 seminar.

Various names for various games

- Which type of players?

Cooperative vs. non-cooperative
■ Which type of for the strategy set?
Finite vs. infinite games
e.g. $\{$ squeal, silent $\}$ for Prisoner's dilemna vs. $[0,1]$ cake cutting game

- Is there any time involved?

Static vs. dynamic games
e.g. battle of the sexes vs. pursuit-evasion game

- Is it stochastic?

Deterministic payoff vs. random payoff

Non-Cooperative Games

Idea : to model competition among players
■ Characterization by a pair of

- a set of stategies S for the n players
- a payoff function f such that $f_{i}(s)$ is the payoff for player i given the overall strategy s

Non-Cooperative Games

Idea : to model competition among players
■ Characterization by a pair of

- a set of stategies S for the n players
- a payoff function f such that $f_{i}(s)$ is the payoff for player i given the overall strategy s
■ Nash equilibrium is defined as a strategy in which no player can improve unilateraly his payoff.

Non-Cooperative Games

Idea : to model competition among players
■ Characterization by a pair of

- a set of stategies S for the n players
- a payoff function f such that $f_{i}(s)$ is the payoff for player i given the overall strategy s
■ Nash equilibrium is defined as a strategy in which no player can improve unilateraly his payoff.
- Duopoly example:

Consider two profit-seeking firms sell an identical product on the same market. Each firm will choose its production rates.
Let $x_{i} \in \mathbb{R}_{+}$be the production of firm i and d, λ and ρ be constants. The market price is

$$
p(x)=d-\rho\left(x_{1}+x_{2}\right)
$$

from which we deduce the i th firm profit

$$
p(x) x_{i}-\lambda x_{i} .
$$

For $d=20, \lambda=4, \rho=1$, we get $x^{\star}=(16 / 3,16 / 3)$.

Extension to generalized NE (GNE)

DEFINITION (NEP)

The Nash equilibrium problem $\operatorname{NEP}\left(N, \theta_{\nu}, X\right)$ for N players consists in finding x^{\star} solving N sub problems

$$
x_{\nu}^{\star} \text { solves } \min _{y_{\nu} \in X_{\nu}} \theta_{\nu}\left(y_{\nu}, x_{-\nu}^{\star}\right), \forall \nu=1, \ldots, N
$$

where X_{ν} is the action space of player ν.

Extension to generalized NE (GNE)

DEFINITION (NEP)

The Nash equilibrium problem $\operatorname{NEP}\left(N, \theta_{\nu}, X\right)$ for N players consists in finding x^{\star} solving N sub problems

$$
x_{\nu}^{\star} \text { solves } \min _{y_{\nu} \in X_{\nu}} \theta_{\nu}\left(y_{\nu}, x_{-\nu}^{\star}\right), \forall \nu=1, \ldots, N
$$

where X_{ν} is the action space of player ν.
GNE was first introduced by Debreu, [Deb52].

DEFINITION (GNEP)

The generalized NE problem GNEP $\left(N, \theta_{\nu}, X_{\nu}\right)$ consists in finding x^{\star} solving N sub problems

$$
x_{\nu}^{\star} \text { solves } \min _{y_{\nu}} \theta_{\nu}\left(y_{\nu}, x_{-\nu}^{\star}\right) \text { such that } x_{\nu}^{\star} \in X_{\nu}\left(x_{-\nu}^{\star}\right), \forall \nu=1, \ldots, N \text {, }
$$

where $X_{\nu}\left(x_{-\nu}\right)$ is the action space of player ν given others player actions $x_{-\nu}$.

Remark: we study a jointly convex case $X=\left\{x, g(x) \leq 0, \forall \nu, h_{\nu}\left(x_{\nu}\right) \leq 0\right\}$.

Outline

1 GAP FUNCTION MINIZATION APPROACH

2 Fixed-point approach

3 KKT Reformulation

Reformulation as a gap

DEfinition (GP)

Let ψ be a gap function. We define a merit function as

$$
\hat{V}(x)=\sup _{y \in X(x)} \psi(x, y) .
$$

From [vHK09], the gap problem $\operatorname{GP}(N, X, \psi)$ is

$$
x^{\star} \in X\left(x^{\star}\right) \text { and } \hat{V}\left(x^{\star}\right)=0 .
$$

Reformulation as a gap

DEfinition (GP)

Let ψ be a gap function. We define a merit function as

$$
\hat{V}(x)=\sup _{y \in X(x)} \psi(x, y) .
$$

From [vHK09], the gap problem $\operatorname{GP}(N, X, \psi)$ is

$$
x^{\star} \in X\left(x^{\star}\right) \text { and } \hat{V}\left(x^{\star}\right)=0 .
$$

Proposition

Assuming continuity, $\hat{V}(x) \geq 0$ and so x^{\star} solves the $\operatorname{GP}(N, X, \psi)$ is equivalent to $\min _{x \in X(x)} \hat{V}(x)$ and $\hat{V}\left(x^{\star}\right)=0$.

Reformulation as a Gap

DEFINITION (GP)

Let ψ be a gap function. We define a merit function as

$$
\hat{V}(x)=\sup _{y \in X(x)} \psi(x, y)
$$

From [vHK09], the gap problem $\operatorname{GP}(N, X, \psi)$ is

$$
x^{\star} \in X\left(x^{\star}\right) \text { and } \hat{V}\left(x^{\star}\right)=0 .
$$

Proposition

Assuming continuity, $\hat{V}(x) \geq 0$ and so x^{\star} solves the $\operatorname{GP}(N, X, \psi)$ is equivalent to $\min _{x \in X(x)} \hat{V}(x)$ and $\hat{V}\left(x^{\star}\right)=0$.
Example: the Nikaido-Isoda function

$$
\psi(x, y)=\sum_{\nu=1}^{N}\left[\theta\left(x_{\nu}, x_{-\nu}\right)-\theta\left(y_{\nu}, x_{-\nu}\right)\right]-\frac{\alpha}{2}\|x-y\|^{2}
$$

The mingap function

The gap function minimization consists in minimizing a gap function $\min V(x)$. The function mingap provides two optimization methods.

- Barzilai-Borwein method

$$
x_{n+1}=x_{n}+t_{n} d_{n},
$$

where direction is $d_{n}=-\nabla V\left(x_{n}\right)$ and stepsize

$$
t_{n}=\frac{d_{n-1}^{T} d_{n-1}}{d_{n-1}^{T}\left(\nabla V\left(x_{n}\right)-\nabla V\left(x_{n-1}\right)\right)}
$$

- BFGS method

$$
x_{n+1}=x_{n}+t_{n} H_{n}^{-1} d_{n},
$$

where H_{n} approximates the Hessian by a symmetric rank two update of the type $H_{n+1}=H_{n}+a u u^{T}+b v v^{T}$ and t_{n} is line searched.

Duopoly example

Let $x_{i} \in \mathbb{R}_{+}$be the production of firm i and $d=20, \lambda=4$ and $\rho=1$ be constants. The i th firm profit

$$
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i} .
$$

```
> minGap(c(10,20), V, GV, method="BB", ...)
**** k 0
x_k 10 20
**** k 1
x_k 9.947252 19.50739
**** k 2
x_k 8.42043 7.216102
**** k 3
x_k 6.53553 6.066531
**** k 4
x_k 5.333327 5.333322
$par
[1] 5.333327 5.333322
$outer.counts
    Vhat gradVhat
        5 9
$outer.iter
[1] 3
$code
[1] 0

\section*{Duopoly example}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
\[
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i}
\]
```

> minGap(c(10,20), V, GV, method="BB", ...)
**** k 0
x_k 10 20
**** k 1
x_k 9.947252 19.50739
**** k 2
x_k 8.42043 7.216102
**** k 3
x_k 6.53553 6.066531
**** k 4
x_k 5.333327 5.333322
\$par
[1] 5.333327 5.333322
\$outer.counts
Vhat gradVhat
5 9

```
\$outer.iter
[1] 3
\$code
[1] 0

\section*{DUOPOLY EXAMPLE}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
\[
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i} .
\]
```

> minGap(c(10,20), V, GV, method="BB", ...)
**** k 0
x_k 10 20
**** k 1
x_k 9.947252 19.50739
**** k 2
x_k 8.42043 7.216102
**** k 3
x_k 6.53553 6.066531
**** k 4
x_k 5.333327 5.333322
\$par
[1] 5.333327 5.333322

```
\$outer.counts
    Vhat gradVhat
\$outer.iter
[1] 3
\$code
[1] 0
\begin{tabular}{lc}
\hline Outer iterations & 3 \\
Inner iterations \(-V\) & 141 \\
Inner iterations \(-\nabla V\) & 269 \\
\hline Function calls \(-V\) & 5 \\
leading to calls \(-\psi\) & 978 \\
leading to calls \(-\nabla \psi\) & 276 \\
\hline Function calls \(-\nabla V\) & 9 \\
leading to calls \(-\psi\) & 2760 \\
leading to calls \(-\nabla \psi\) & 652 \\
\hline
\end{tabular}
\$outer.iter
[1] 3
\(>\)

\section*{Outline}

1 GAP FUNCTION MINIZATION APPROACH

2 FIXED-POINT APPROACH

3 KKT REFORMULATION

\section*{Reformulation of the GNE problem as a fixed-point}

DEFINITION (REGULARIZED NIF)
The regularized Nikaido-Isoda function is
\[
N I F_{\alpha}(x, y)=\sum_{\nu=1}^{N}\left[\theta\left(x_{\nu}, x_{-\nu}\right)-\theta\left(y_{\nu}, x_{-\nu}\right)\right]-\frac{\alpha}{2}\|x-y\|^{2}
\]
with a regularization parameter \(\alpha>0\).
Let \(y_{\alpha}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}\) be the equilibrium "response" defined as
\[
y_{\alpha}(x)=\left(y_{\alpha}^{1}(x), \ldots, y_{\alpha}^{N}(x)\right)
\]
where
\[
y_{\alpha}^{i}(x)=\underset{y_{i} \in X_{i}\left(x_{-i}\right)}{\arg \max } \operatorname{NIF}_{\alpha}(x, y) .
\]

\section*{Thefixedpoint function}

Fixed-point methods for \(f(x)=0\)
- "pure" fixed point method
\[
x_{n+1}=f\left(x_{n}\right) .
\]
- Polynomial methods
- Relaxation algorithm
\[
x_{n+1}=\lambda_{n} f\left(x_{n}\right)+\left(1-\lambda_{n}\right) x_{n},
\]
where \(\left(\lambda_{n}\right)_{n}\) is either constant, decreasing or line-searched.
- RRE and MPE method
\[
x_{n+1}=x_{n}+t_{n}\left(f\left(x_{n}\right)-x_{n}\right)
\]
where \(r_{n}=f\left(x_{n}\right)-x_{n}\) and \(v_{n}=f\left(f\left(x_{n}\right)\right)-2 f\left(x_{n}\right)+x_{n}\), with \(t_{n}\) equals to \(<v_{n}, r_{n}>/<v_{n}, v_{n}>\) for RRE1, \(<r_{n}, r_{n}>/<v_{n}, r_{n}>\) for MPE1.
- Squaring method

It consists in applying twice a cycle step to get the next iterate
\[
x_{n+1}=x_{n}-2 t_{n} r_{n}+t_{n}^{2} v_{n},
\]
given \(t_{n}\) such as RRE and MPE.
- Epsilon algorithms: not implemented

\section*{DUOPOLY EXAMPLE}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
\[
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i} .
\]
```

> fixedpoint(c(0,0), method="pure", ...)
\$par
[1] 5.333334 5.333333
\$outer.counts
yfunc Vfunc
24 24
\$outer.iter
[1] 24
\$code
[1] 0

```

\section*{Duopoly example}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
\[
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i} .
\]

Total calls
\begin{tabular}{|c|c|c|c|c|}
\hline > fixedpoint (c (0,0), method="pure", ...) & & \(\psi\) & \(\nabla \psi\) & Outer iter \\
\hline \$par
[1] 5.3333345 .333333 & Gap - BB & 317 & 90 & 2 \\
\hline
\end{tabular}
\$outer. counts
yfunc Vfunc
    \(24 \quad 24\)
\$outer.iter
[1] 24
\$code
[1] 0

\section*{Duopoly example}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
\[
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i} .
\]

Total calls
\begin{tabular}{|c|c|c|c|c|}
\hline > fixedpoint (c ( 0,0 ), method="pure", ...) & & \(\psi\) & \(\nabla \psi\) & Outer iter \\
\hline \({ }_{\text {Spar }}^{\text {[1] }} 5.3333345 .333333\) & Gap - BB & 317 & 90 & 2 \\
\hline uter & Pure FP & 2276 & 724 & 25 \\
\hline y func vfunc & Decr. FP & 1207 & 399 & 13 \\
\hline \(24 \quad 24\) & Line search FP & 2492 & 802 & 14 \\
\hline
\end{tabular}
\$outer.iter
[1] 24
```

\$code
[1] 0

```
\(>\)

\section*{Duopoly example}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
\[
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i} .
\]

Total calls
\begin{tabular}{|c|c|c|c|c|}
\hline > fixedpoint ( ( 0,0 ), method="pure", ...) & & \(\psi\) & \(\nabla \psi\) & Outer iter \\
\hline \({ }_{\text {Spar }}^{\text {[1] }} 5.3333345 .333333\) & Gap - BB & 317 & 90 & 2 \\
\hline & Pure FP & 2276 & 724 & 25 \\
\hline Souter.counts & Decr. FP & 1207 & 399 & 13 \\
\hline \(24 \quad 24\) & Line search FP & 2492 & 802 & 14 \\
\hline Souter. \({ }^{\text {ater }}\) (1] 24
[1] & RRE FP & 536 & 134 & 4 \\
\hline & MPE FP & 390 & 120 & 3 \\
\hline
\end{tabular}
\$code
[1] 0

\section*{Duopoly example}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
\[
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i} .
\]

Total calls
```

> fixedpoint(c(0,0), method="pure", ...)
\$par
[1] 5.333334 5.333333
\$outer.counts
yfunc Vfunc
\$outer.iter
[1] 24
\$code
[1] 0
>

```
\begin{tabular}{lccc} 
& \(\psi\) & \(\nabla \psi\) & Outer iter \\
\hline Gap - BB & 317 & 90 & 2 \\
\hline Pure FP & 2276 & 724 & 25 \\
\hline Decr. FP & 1207 & 399 & 13 \\
\hline Line search FP & 2492 & 802 & 14 \\
\hline RRE FP & 536 & 134 & 4 \\
\hline MPE FP & 390 & 120 & 3 \\
\hline SqRRE FP & 491 & 197 & 4 \\
\hline SqMPE FP & 530 & 166 & 3 \\
\hline
\end{tabular}

\section*{Outline}

1 GAP FUNCTION MINIZATION APPROACH

2 FIXED-POINT APPROACH

3 KKT REFORMULATION

\section*{KKT SYSTEM REFORMULATION}

\section*{DEFInition (KKT)}

From [FFP09], the first-order necessary conditions for \(\nu\) subproblem states, there exists a Lagrangian multiplier \(\lambda_{\nu} \in \mathbb{R}^{m}\) such that
\[
\begin{array}{r}
\tilde{L}(x, \lambda)=\nabla_{x_{\nu}} \theta_{x_{\nu}}(x)+\sum_{1 \leq j \leq m} \lambda_{\nu j} \nabla_{x_{\nu}} g_{j}(x)=0 \quad\left(\in \mathbb{R}^{n_{\nu}}\right) \\
0 \leq \lambda_{\nu} \perp g(x) \geq 0 \quad\left(\in \mathbb{R}^{m}\right)
\end{array}
\]

\section*{KKT System reformulation}

\section*{Definition (KKT)}

From [FFP09], the first-order necessary conditions for \(\nu\) subproblem states, there exists a Lagrangian multiplier \(\lambda_{\nu} \in \mathbb{R}^{m}\) such that
\[
\begin{aligned}
\tilde{L}(x, \lambda)=\nabla_{x_{\nu}} \theta_{x_{\nu}}(x)+\sum_{1 \leq j \leq m} \lambda_{\nu j} \nabla_{x_{\nu}} g_{j}(x)=0 & \left(\in \mathbb{R}^{n_{\nu}}\right) \\
0 \leq \lambda_{\nu} \perp g(x) \geq 0 & \left(\in \mathbb{R}^{m}\right)
\end{aligned} .
\]

\section*{Proposition}

The extended KKT system can be reformulated as a system of equations using complementarity functions. Let \(\phi\) be a complementarity function.
\[
F_{\phi}(x, \lambda)=0 \text { where } F_{\phi}(x, \lambda)=\binom{\tilde{L}(x, \lambda)}{\phi .(-g(x), \lambda)} \text {, }
\]
where \(\phi\). is the component-wise version of \(\phi\).
Example: \(\phi(a, b)=\min (a, b)\).

\section*{The NewtonKKT function}

The problem is
\[
\Phi(z)=0
\]
with \(z=\left(x^{T} \lambda^{T}\right)^{T}\). It is solved by an iterative scheme \(z_{n+1}=z_{n}+d_{n}\), where the direction \(d_{n}\) is computed in two different ways:
- Newton method: The direction solves the system
\[
V_{n} d=-\Phi\left(x_{n}\right)
\]
with \(V_{n} \in \partial \Phi\left(x_{n}\right)\).
- The Levenberg-Marquardt method: The direction solves the system
\[
\left(V_{n}^{T} V_{n}+\lambda_{k} I\right) d=-V_{n}^{T} \Phi\left(x_{n}\right),
\]
where \(I\) denotes the identity matrix, \(\lambda_{k}\) is the LM parameter, e.g.
\[
\lambda_{n}=\left\|\Phi\left(z_{n}\right)\right\|^{2} .
\]

\section*{Duopoly example}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
```

0i}(x)=(d-\rho(\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{}))\mp@subsup{x}{i}{}-\lambda\mp@subsup{x}{i}{
> NewtonKKT(rep(0, 4), "Leven", ...)
\$par
[1] 5.333 5.333 -3e-08 -3e-08
\$value
[1] 4.502713e-08
\$counts
phi jacphi
12 12
\$iter
[1] 11

```

\section*{Duopoly example}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
\[
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i} .
\]
```

> NewtonKKT(rep(0, 4), "Leven", ...)
\$par
[1] 5.333 5.333 -3e-08 -3e-08
\$value
[1] 4.502713e-08
\$counts
phi jacphi
12 12
\$iter
[1] 11

```

\section*{Duopoly example}

Let \(x_{i} \in \mathbb{R}_{+}\)be the production of firm \(i\) and \(d=20, \lambda=4\) and \(\rho=1\) be constants. The \(i\) th firm profit
\[
\theta_{i}(x)=\left(d-\rho\left(x_{1}+x_{2}\right)\right) x_{i}-\lambda x_{i} .
\]
```

> NewtonKKT(rep(0, 4), "Leven", ...)
\$par
[1] 5.333 5.333 -3e-08 -3e-08
\$value
[1] 4.502713e-08
\$counts
phi jacphi
12 12
\$iter
[1] 11

```

\section*{Conclusion}

The GNE package \({ }^{1}\) provides base tools to compute generalized Nash equilibria for static infinite noncooperative games.

Three methods :
- Gap function minimization: minGap,
- Fixed-point methods: fixedpoint,
- KKT reformulation: NewtonKkt.

\footnotetext{
\({ }^{1}\) hosted on R-forge.
}

\section*{Conclusion}

The GNE package \({ }^{1}\) provides base tools to compute generalized Nash equilibria for static infinite noncooperative games.

Three methods :
- Gap function minimization: minGap,

■ Fixed-point methods: fixedpoint,
- KKT reformulation: NewtonKKT.

Future developments:
- extends to non jointly convex case for FP and GP methods,
- develop further the KKT reformulation,
- later, extends to finite noncooperative games, e.g. Lemke-Howson algorithm,
- far later, extends to cooperative games!

\footnotetext{
\({ }^{1}\) hosted on R-forge.
}

\section*{References}

围 Gerard Debreu, A social equilibrium existence theorem, Proc. Nat. Acad. Sci. U.S.A. (1952).
\(\square\) Francisco Facchinei, Andreas Fischer, and Veronica Piccialli, Generalized Nash equilibrium problems and Newton methods, Math. Program., Ser. B 117 (2009), 163-194.
Anna von Heusinger and Christian Kanzow, Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions, Computational Optimization and Applications 43 (2009), no. 3.

\section*{Thank you for your attention!}```

