Introduction

Gap function

FP 000 **KKT** 000 Conclusion

Computation of Generalized Nash Equilibria with the **GNE** package

C. Dutang^{1,2}

¹ISFA - Lyon, ²AXA GRM - Paris,

1/19 12/08/2011 useR! 2011

ntroduction	Gap function	FP	KKT	Conclusion
000	000	000	000	0
000	000	000	000	0

OUTLINE

1 GAP FUNCTION MINIZATION APPROACH

2 FIXED-POINT APPROACH

3 KKT REFORMULATION

2/19 12/08/2011 useR! 2011

Introduction	Gap function	FP	ККТ	Conclusion
•00	000	000	000	0

WHAT IS A NASH EQUILIBRIUM (NE)?

Some history,

- An equilibrium concept was first introduced by Cournot in 1838.
- But mathematical concepts had widely spread with *The theory of games* and economic behavior of von Neumann & Morgenstern book in 1947.
- John F. Nash introduces the NE equilibrium concept in a 1949 seminar.

Introduction	Gap function	FP	KKT	Conclusion
●00	000	000	000	0

WHAT IS A NASH EQUILIBRIUM (NE)?

Some history,

- An equilibrium concept was first introduced by Cournot in 1838.
- But mathematical concepts had widely spread with *The theory of games* and economic behavior of von Neumann & Morgenstern book in 1947.
- John F. Nash introduces the NE equilibrium concept in a 1949 seminar.

Various names for various games

- Which type of players? Cooperative vs. non-cooperative
- Which type of for the strategy set?
 Finite vs. infinite games
 e.g. {squeal, silent} for Prisoner's dilemna vs. [0, 1] cake cutting game
- Is there any time involved?
 Static vs. dynamic games
 e.g. battle of the sexes vs. pursuit-evasion game
- Is it stochastic?
 Deterministic payoff vs. random payoff

Introduction	Gap function	FP	ККТ	Conclusion
000	000	000	000	0

NON-COOPERATIVE GAMES

- Idea : to model competition among players
 - Characterization by a pair of
 - a set of stategies S for the n players
 - a payoff function f such that $f_i(s)$ is the payoff for player i given the overall strategy s

Introduction	Gap function	FP	ККТ	Conclusion
000	000	000	000	0

NON-COOPERATIVE GAMES

- Idea : to model competition among players
 - Characterization by a pair of
 - a set of stategies S for the n players
 - a payoff function f such that $f_i(s)$ is the payoff for player i given the overall strategy s
 - Nash equilibrium is defined as a strategy in which no player can improve unilateraly his payoff.

Introduction	Gap function	FP	KKT	Conclusion
000	000	000	000	0

NON-COOPERATIVE GAMES

- Idea : to model competition among players
 - Characterization by a pair of
 - a set of stategies S for the n players
 - a payoff function f such that $f_i(s)$ is the payoff for player i given the overall strategy s
 - Nash equilibrium is defined as a strategy in which no player can improve unilateraly his payoff.
 - Duopoly example:

Consider two profit-seeking firms sell an identical product on the same market. Each firm will choose its production rates.

Let $x_i \in \mathbb{R}_+$ be the production of firm i and d, λ and ρ be constants. The market price is

$$p(x) = d - \rho(x_1 + x_2),$$

from which we deduce the *i*th firm profit

$$p(x)x_i - \lambda x_i.$$

For d = 20, $\lambda = 4$, $\rho = 1$, we get $x^* = (16/3, 16/3)$.

Introduction	Gap function	FP	ККТ	Conclusion
00●	000	000	000	0

EXTENSION TO GENERALIZED NE (GNE)

DEFINITION (NEP)

The Nash equilibrium problem $NEP(N, \theta_{\nu}, X)$ for N players consists in finding x^* solving N sub problems

$$x_{\nu}^{\star}$$
 solves $\min_{y_{\nu}\in X_{\nu}} \theta_{\nu}(y_{\nu}, x_{-\nu}^{\star}), \forall \nu = 1, \dots, N,$

where X_{ν} is the action space of player ν .

Introduction	Gap function	FP	KKT	Conclusion
00●	000	000	000	0

EXTENSION TO GENERALIZED NE (GNE)

DEFINITION (NEP)

The Nash equilibrium problem $NEP(N, \theta_{\nu}, X)$ for N players consists in finding x^* solving N sub problems

$$x_{\nu}^{\star}$$
 solves $\min_{y_{\nu} \in X_{\nu}} \theta_{\nu}(y_{\nu}, x_{-\nu}^{\star}), \forall \nu = 1, \dots, N,$

where X_{ν} is the action space of player ν . GNE was first introduced by Debreu, [Deb52].

DEFINITION (GNEP)

The generalized NE problem $\text{GNEP}(N, \theta_{\nu}, X_{\nu})$ consists in finding x^{\star} solving N sub problems

 x_{ν}^{\star} solves $\min_{y_{\nu}} \theta_{\nu}(y_{\nu}, x_{-\nu}^{\star})$ such that $x_{\nu}^{\star} \in X_{\nu}(x_{-\nu}^{\star}), \forall \nu = 1, \dots, N,$

where $X_{\nu}(x_{-\nu})$ is the action space of player ν given others player actions $x_{-\nu}$.

Remark: we study a jointly convex case $X = \{x, g(x) \le 0, \forall \nu, h_{\nu}(x_{\nu}) \le 0\}$.

Introduction	Gap function	FP	ККТ	Conclusion
000	000	000	000	0

OUTLINE

1 GAP FUNCTION MINIZATION APPROACH

2 FIXED-POINT APPROACH

3 KKT REFORMULATION

Introduction	Gap function	FP	KKT	Conclusion
000	•00	000	000	0

REFORMULATION AS A GAP

DEFINITION (GP)

Let ψ be a gap function. We define a merit function as

 $\hat{V}(x) = \sup_{y \in X(x)} \psi(x, y).$

From [vHK09], the gap problem $GP(N, X, \psi)$ is

$$x^* \in X(x^*) \text{ and } \hat{V}(x^*) = 0.$$

Introduction	Gap function	FP	KKT	Conclusion
000	•00	000	000	0

REFORMULATION AS A GAP

DEFINITION (GP)

Let ψ be a gap function. We define a merit function as

 $\hat{V}(x) = \sup_{y \in X(x)} \psi(x, y).$

From [vHK09], the gap problem $GP(N, X, \psi)$ is

 $x^* \in X(x^*) \text{ and } \hat{V}(x^*) = 0.$

PROPOSITION

Assuming continuity, $\hat{V}(x) \ge 0$ and so x^* solves the GP(N, X, ψ) is equivalent to $\min_{x \in X(x)} \hat{V}(x)$ and $\hat{V}(x^*) = 0$.

Introduction	Gap function	FP	ККТ	Conclusion
000	•00	000	000	0

REFORMULATION AS A GAP

DEFINITION (GP)

Let ψ be a gap function. We define a merit function as

 $\hat{V}(x) = \sup_{y \in X(x)} \psi(x, y).$

From [vHK09], the gap problem $GP(N, X, \psi)$ is

 $x^* \in X(x^*) \text{ and } \hat{V}(x^*) = 0.$

PROPOSITION

Assuming continuity, $\hat{V}(x) \ge 0$ and so x^* solves the GP(N, X, ψ) is equivalent to $\min_{x \in X(x)} \hat{V}(x)$ and $\hat{V}(x^*) = 0$.

Example: the Nikaido-Isoda function

$$\psi(x,y) = \sum_{\nu=1}^{N} [\theta(x_{\nu}, x_{-\nu}) - \theta(y_{\nu}, x_{-\nu})] - \frac{\alpha}{2} ||x-y||^2.$$

Introduction	Gap function	FP	KKT	Conclusion
000	000	000	000	0

The gap function minimization consists in minimizing a gap function

 $\min V(x)$. The function minGap provides two optimization methods.

Barzilai-Borwein method

 $x_{n+1} = x_n + t_n d_n,$

where direction is $d_n = -\nabla V(x_n)$ and stepsize

$$t_n = \frac{d_{n-1}^T d_{n-1}}{d_{n-1}^T (\nabla V(x_n) - \nabla V(x_{n-1}))}.$$

BFGS method

THE MINGAP FUNCTION

$$x_{n+1} = x_n + t_n H_n^{-1} d_n,$$

where H_n approximates the Hessian by a symmetric rank two update of the type $H_{n+1} = H_n + auu^T + bvv^T$ and t_n is line searched.

Introduction	Gap function	FP	KKT	Conclusion
000	00●	000	000	0

9/19

```
\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.
```

```
> minGap(c(10,20), V, GV, method="BB", ...)
**** k 0
x k 10 20
**** k 1
x k 9.947252 19.50739
**** k 2
x k 8.42043 7.216102
**** k 3
x k 6.53553 6.066531
**** k 4
x k 5.333327 5.333322
$par
[1] 5.333327 5.333322
Souter.counts
    Vhat gradVhat
       5
                 9
Souter.iter
[1] 3
$code
[1] 0
>
   12/08/2011
               useR! 2011
```

Introduction	Gap function	FP	ККТ	Conclusion
000	000	000	000	0

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

```
> minGap(c(10,20), V, GV, method="BB", ...)
    **** k 0
    x k 10 20
    **** k 1
    x k 9.947252 19.50739
    **** k 2
    x k 8.42043 7.216102
    **** k 3
    x k 6.53553 6.066531
    **** k 4
    x k 5.333327 5.333322
    $par
    [1] 5.333327 5.333322
    Souter.counts
        Vhat gradVhat
           5 9
    Souter.iter
    [1] 3
    $code
    [1] 0
    >
9/19
       12/08/2011
                  useR! 2011
```

Outer iterations	3
Inner iterations - V	141
Inner iterations - ∇V	269

Introduction	Gap function	FP	KKT	Conclusion
000	00●	000	000	0

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

```
> minGap(c(10,20), V, GV, method="BB", ...)
    **** k 0
     x k 10 20
    **** k 1
     x k 9.947252 19.50739
    **** k 2
     x k 8.42043 7.216102
    **** k 3
     x k 6.53553 6.066531
    **** k 4
    x k 5.333327 5.333322
    $par
    [1] 5.333327 5.333322
    Souter.counts
        Vhat gradVhat
           5
                9
    Souter.iter
    [1] 3
    $code
    [1] 0
    >
9/19
       12/08/2011
                  useR! 2011
```

Outer iterations	3
Inner iterations - V	141
Inner iterations - ∇V	269
Function calls - V	5
leading to calls - ψ	978
leading to calls - $ abla \psi$	276
Function calls - ∇V	9
leading to calls - ψ	2760
leading to calls - $ abla \psi$	652

Introduction

Gap function

FP 000 **KKT** 000 Conclusion

OUTLINE

1 GAP FUNCTION MINIZATION APPROACH

2 FIXED-POINT APPROACH

3 KKT REFORMULATION

10/19 12/08/2011 useR! 2011

Introduction	Gap function	FP	KKT	Conclusion
000	000	● ○ ○	000	0

REFORMULATION OF THE GNE PROBLEM AS A FIXED-POINT

DEFINITION (REGULARIZED NIF)

The regularized Nikaido-Isoda function is

$$NIF_{\alpha}(x,y) = \sum_{\nu=1}^{N} [\theta(x_{\nu}, x_{-\nu}) - \theta(y_{\nu}, x_{-\nu})] - \frac{\alpha}{2} ||x-y||^{2},$$

with a regularization parameter $\alpha > 0$. Let $y_{\alpha} : \mathbb{R}^n \mapsto \mathbb{R}^n$ be the equilibrium "response" defined as

$$y_{\alpha}(x) = (y_{\alpha}^{1}(x), \dots, y_{\alpha}^{N}(x)),$$

where

$$y_{\alpha}^{i}(x) = \underset{y_{i} \in X_{i}(x_{-i})}{\operatorname{arg\,max}} \operatorname{NIF}_{\alpha}(x, y).$$

Introduction	Gap function	FP	KKT	Conclusion
000	000	000	000	0

THE FIXEDPOINT FUNCTION

Fixed-point methods for f(x) = 0

"pure" fixed point method

$$x_{n+1} = f(x_n).$$

- Polynomial methods
 - Relaxation algorithm

$$x_{n+1} = \lambda_n f(x_n) + (1 - \lambda_n) x_n,$$

where $(\lambda_n)_n$ is either constant, decreasing or line-searched. ■ RRE and MPE method

$$x_{n+1} = x_n + t_n(f(x_n) - x_n)$$

where $r_n = f(x_n) - x_n$ and $v_n = f(f(x_n)) - 2f(x_n) + x_n$, with t_n equals to $< v_n, r_n > / < v_n, v_n >$ for RRE1, $< r_n, r_n > / < v_n, r_n >$ for MPE1. Squaring method

It consists in applying twice a cycle step to get the next iterate

$$x_{n+1} = x_n - 2t_n r_n + t_n^2 v_n$$

given t_n such as RRE and MPE.

Epsilon algorithms: not implemented

Introduction	Gap function	FP	KKT	Conclusion
000	000	000	000	0
DUOPOLY EX	KAMPLE			

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

```
> fixedpoint(c(0,0), method="pure", ...)
$par
[1] 5.333334 5.333333
$outer.counts
yfunc Vfunc
    24    24
$outer.iter
[1] 24
$code
[1] 0
>
```

Introduction	Gap function	FP	KKT	Conclusion
000		00●	000	O
DUOPOLY EXAMPL	Æ			

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

	Total calls			
<pre>> fixedpoint(c(0,0), method="pure",)</pre>		ψ	$\nabla \psi$	Outer iter
spar [1] 5.333334 5.333333	Gap - BB	317	90	2
\$outer.counts yfunc Vfunc 24 24				
\$outer.iter [1] 24				
\$code [1] 0 >				

Introduction	Gap function	FP	KKT	Conclusion
000	000	000	000	0
DUOPOLY EX	KAMPLE			

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

		Total	calls	
<pre>> fixedpoint(c(0,0), method="pure",) </pre>		ψ	$ abla\psi$	Outer iter
spar [1] 5.333334 5.333333	Gap - BB	317	90	2
Souter counts	Pure FP	2276	724	25
yfunc Vfunc	Decr. FP	1207	399	13
24 24	Line search FP	2492	802	14
\$outer.iter [1] 24				

```
$code
[1] 0
>
```

Introduction	Gap function	FP	KKT	Conclusion
000	000	000	000	0

Let $x_i \in \mathbb{R}_+$ be the production of firm i and d = 20, $\lambda = 4$ and $\rho = 1$ be constants. The *i*th firm profit

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

	Total calls			
<pre>> fixedpoint(c(0,0), method="pure",)</pre>		ψ	$ abla\psi$	Outer iter
Spar [1] 5.333334 5.333333	Gap - BB	317	90	2
Soutor counts	Pure FP	2276	724	25
yfunc Vfunc	Decr. FP	1207	399	13
24 24	Line search FP	2492	802	14
\$outer.iter	RRE FP	536	134	4
[1] 24	MPE FP	390	120	3
\$code [1] 0				

>

Introduction	Gap function	FP	KKT	Conclusion
000	000	000	000	0

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

	Total calls			
<pre>> fixedpoint(c(0,0), method="pure",)</pre>		ψ	$ abla\psi$	Outer iter
<pre>\$par [1] 5.333334 5.333333</pre>	Gap - BB	317	90	2
Souter counts	Pure FP	2276	724	25
yfunc Vfunc	Decr. FP	1207	399	13
24 24	Line search FP	2492	802	14
\$outer.iter	RRE FP	536	134	4
[1] 24	MPE FP	390	120	3
\$code [1] 0	SqRRE FP	491	197	4
>	SqMPE FP	530	166	3

Introduction

Gap function

FP 000 **KKT** 000 Conclusion

OUTLINE

1 GAP FUNCTION MINIZATION APPROACH

2 FIXED-POINT APPROACH

3 KKT REFORMULATION

14/19 12/08/2011 useR! 2011

Introduction	Gap function	FP	ккт	Conclusion
000	000	000	•00	0

KKT SYSTEM REFORMULATION

DEFINITION (KKT)

From [FFP09], the first-order necessary conditions for ν subproblem states, there exists a Lagrangian multiplier $\lambda_{\nu} \in \mathbb{R}^m$ such that

$$\tilde{L}(x,\lambda) = \nabla_{x_{\nu}}\theta_{x_{\nu}}(x) + \sum_{1 \le j \le m} \lambda_{\nu j} \nabla_{x_{\nu}} g_j(x) = 0 \qquad (\in \mathbb{R}^{n_{\nu}})$$
$$0 \le \lambda_{\nu} \perp g(x) \ge 0 \qquad (\in \mathbb{R}^m)$$

Introduction	Gap function	FP	ккт	Conclusion
000	000	000	●00	0

KKT SYSTEM REFORMULATION

DEFINITION (KKT)

From [FFP09], the first-order necessary conditions for ν subproblem states, there exists a Lagrangian multiplier $\lambda_{\nu} \in \mathbb{R}^m$ such that

$$\tilde{L}(x,\lambda) = \nabla_{x_{\nu}} \theta_{x_{\nu}}(x) + \sum_{1 \le j \le m} \lambda_{\nu j} \nabla_{x_{\nu}} g_j(x) = 0 \qquad (\in \mathbb{R}^{n_{\nu}})$$
$$0 \le \lambda_{\nu} \perp g(x) \ge 0 \qquad (\in \mathbb{R}^m)$$

PROPOSITION

The extended KKT system can be reformulated as a system of equations using complementarity functions. Let ϕ be a complementarity function.

$$F_{\phi}(x,\lambda) = 0$$
 where $F_{\phi}(x,\lambda) = \begin{pmatrix} \tilde{L}(x,\lambda) \\ \phi_{\cdot}(-g(x),\lambda) \end{pmatrix}$,

where ϕ_{\cdot} is the component-wise version of ϕ_{\cdot}

Example: $\phi(a, b) = \min(a, b)$.

15/19 12/08/2011 useR! 2011

Introduction	Gap function	FP	ккт	Conclusion
000	000	000	000	0

THE NEWTONKKT FUNCTION

The problem is

$$\Phi(z) = 0,$$

with $z = (x^T \lambda^T)^T$. It is solved by an iterative scheme $z_{n+1} = z_n + d_n$, where the direction d_n is computed in two different ways:

Newton method: The direction solves the system

$$V_n d = -\Phi(x_n),$$

with $V_n \in \partial \Phi(x_n)$.

The Levenberg-Marquardt method: The direction solves the system

$$(V_n^T V_n + \lambda_k I)d = -V_n^T \Phi(x_n),$$

where I denotes the identity matrix, λ_k is the LM parameter, e.g. $\lambda_n = || \Phi(z_n) ||^2$.

Introduction	Gap function	FP	ккт	Conclusion	
000	000	000	000	0	
DUOPOLY EXAMPLE					

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

```
> NewtonKKT(rep(0, 4), "Leven", ...)
$par
[1] 5.333 5.333 -3e-08 -3e-08
$value
[1] 4.502713e-08
$counts
    phi jacphi
    12    12
$iter
[1] 11
>
```

Introduction	Gap function	FP	ккт	Conclusion
000	000	000	000	0
DUOPOLY EX	KAMPLE			

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

<pre>> NewtonKKT(rep(0, 4), "Leven",) \$par</pre>		Total	calls	
[1] 5.333 5.333 -3e-08 -3e-08		ψ	$ abla\psi$	Outer iter
\$value [1] 4.502713e-08	Gap - BB	317	90	2
	Decr. FP	1207	399	13
\$counts phi jacphi	MPE FP	390	120	3
12 12				
Şiter				

S.

Introduction	Gap function	FP	ккт	Conclusion
000	000	000	000	0
DUOPOLY EX	KAMPLE			

$$\theta_i(x) = (d - \rho(x_1 + x_2))x_i - \lambda x_i.$$

> NewtonKKT(rep(0, 4), "Leven",)				
\$par	Total calls			
[1] 5.333 5.333 -3e-08 -3e-08		ψ	$ abla\psi$	Outer iter
\$value	Gap - BB	317	90	2
[1] 4.302/130-08	Decr. FP	1207	399	13
\$counts phi jacphi	MPE FP	390	120	3
12 12	Newton	3	3	2
\$iter	LM	12	12	11
[1] 11				

5

Introduction	Gap function	FP	ККТ	Conclusion
000	000	000	000	•
CONCLUSION				

The **GNE** package¹ provides base tools to compute generalized Nash equilibria for static infinite noncooperative games.

Three methods :

- Gap function minimization: minGap,
- Fixed-point methods: fixedpoint,
- **KKT reformulation:** NewtonKKT.

¹hosted on R-forge.

18/19 12/08/2011 useR! 2011

Introduction	Gap function	FP	ККТ	Conclusion
000	000	000	000	•

CONCLUSION

The **GNE** package¹ provides base tools to compute generalized Nash equilibria for static infinite noncooperative games.

Three methods :

- Gap function minimization: minGap,
- Fixed-point methods: fixedpoint,
- **KKT reformulation:** NewtonKKT.

Future developments:

- extends to non jointly convex case for FP and GP methods,
- develop further the KKT reformulation,
- later, extends to finite noncooperative games, e.g. Lemke-Howson algorithm,
- far later, extends to cooperative games!

¹hosted on R-forge.

^{18/19 12/08/2011} useR! 2011

REFERENCES

- Gerard Debreu, *A social equilibrium existence theorem*, Proc. Nat. Acad. Sci. U.S.A. (1952).
- Francisco Facchinei, Andreas Fischer, and Veronica Piccialli, Generalized Nash equilibrium problems and Newton methods, Math. Program., Ser. B 117 (2009), 163–194.
 - Anna von Heusinger and Christian Kanzow, *Optimization reformulations* of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions, Computational Optimization and Applications **43** (2009), no. 3.

Thank you for your attention!