gamboostLSS: boosting generalized additive models for location, scale and shape

Benjamin Hofner

Joint work with Andreas Mayr, Nora Fenske, Thomas Kneib and Matthias Schmid

> Department of Medical Informatics, Biometry and Epidemiology
> FAU Erlangen-Nürnberg, Germany
useR! 2011

Motivation: Munich rental guide

Aim:

- Provide precise point predictions and prediction intervals for the net-rent of flats in the city of Munich.

Data:

- Covariates: 325 (mostly) categorical, 2 continuous and 1 spatial
- Observations: 3016 flats

Problem:

- Heteroscedasticity found in the data

Idea

Model not only the expected mean but also the variance \Rightarrow GAMLSS

The GAMLSS model class

Generalized Additive Models for Location, Scale and Shape

$$
\begin{aligned}
& g_{1}(\mu)=\eta_{\mu}=\beta_{0 \mu}+\sum_{j=1}^{p_{1}} f_{j \mu}\left(x_{j}\right) \quad \text { "location" } \\
& g_{2}(\sigma)=\eta_{\sigma}=\beta_{0 \sigma}+\sum_{j=1}^{p_{2}} f_{j \sigma}\left(x_{j}\right) \quad \text { "scale" }
\end{aligned}
$$

- Introduced by Rigby and Stasinopoulos (2005)
- Flexible alternative to generalized additive models (GAM)
- Up to four distribution parameters are regressed on the covariates.
- Every distribution parameter is modeled by its own predictor and an associated link function $g_{k}(\cdot)$.

Current fitting algorithm

The gamlss package

Fitting algorithms for a large amount of distribution families are provided by the \mathbf{R} package gamlss (Stasinopoulus and Rigby, 2007).

- Estimation is based on a penalized likelihood approach.
- Modified versions of back-fitting (as for conventional GAMs) are used.

These algorithms work remarkably well in many applications, but:

- It is not feasible for high-dimensional data $(p \gg n)$.
- No spatial effects are implemented.
- Variable selection is based on generalized AIC, which is known to be unstable.
\triangleright "More work needs to be done here" (Stasinopoulus and Rigby, 2007).

Optimization problem for GAMLSS

- The task is to model the distribution parameters of the conditional density $f_{\text {dens }}(y \mid \mu, \sigma, \nu, \tau)$
\triangleright The optimization problem can be formulated as

$$
(\underbrace{\hat{\mu}, \hat{\sigma}, \hat{\nu}, \hat{\tau}}_{\boldsymbol{\theta}}) \longleftarrow \underset{\eta_{\mu}, \eta_{\sigma}, \eta_{\nu}, \eta_{\tau}}{\operatorname{argmin}} \mathbb{E}_{Y, X}[\rho(Y, \underbrace{\eta_{\mu}(X), \eta_{\sigma}(X), \eta_{\nu}(X), \eta_{\tau}(X)}_{\boldsymbol{\eta}})]
$$

with loss function $\rho=-l$, i.e., the negative log-likelihood of the response distribution:

$$
l=\sum_{i=1}^{n} \log \left[f_{\text {dens }}\left(y_{i} \mid \boldsymbol{\theta}_{i}\right)\right]=\sum_{i=1}^{n} \log \left[f_{\text {dens }}\left(y_{i} \mid \mu_{i}, \sigma_{i}, \nu_{i}, \tau_{i}\right)\right]
$$

\triangleright Maximum likelihood approach

Alternative to ML: \triangleright Component-wise boosting

Boosting

- minimizes empirical risk (e.g., negative log likelihood)
- in an iterative fashion
- via functional gradient descent (FGD).

In boosting iteration $m+1$

- Compute (negative) gradient of the loss function and plug in the current estimate

$$
u_{i}^{[m+1]}=-\left.\frac{\partial \rho\left(y_{i}, \eta\right)}{\partial \eta}\right|_{\eta=\hat{\eta}_{i}^{[m]}}
$$

- Estimate $u_{i}^{[m+1]}$ via base-learners (i.e., simple regression models)
- Update: use only the best-fitting base-learner; add a small fraction ν of this estimated base-learner (e.g., 10%) to the model
\triangleright Variable selection intrinsically within the fitting process

Boosting for GAMLSS models

- Boosting was recently extended to risk functions with multiple components (Schmid et al., 2010)
- Idea \triangleright Use partial derivatives instead of gradient
- Specify a set of base-learners - one base-learner per covariate
- Fit each of the base-learners separately to the partial derivatives
- Cycle through the partial derivatives within each boosting step

Boosting for GAMLSS models

- Boosting was recently extended to risk functions with multiple components (Schmid et al., 2010)
- Idea \triangleright Use partial derivatives instead of gradient
- Specify a set of base-learners - one base-learner per covariate
- Fit each of the base-learners separately to the partial derivatives
- Cycle through the partial derivatives within each boosting step

$$
\frac{\partial \rho}{\partial \eta_{\boldsymbol{\mu}}}\left(y_{i}, \hat{\mu}^{[m]}, \hat{\sigma}^{[m]}, \hat{\nu}^{[m]}, \hat{\tau}^{[m]}\right) \quad \underset{\text { best fitting BL }}{\stackrel{\text { update }}{\longrightarrow}} \hat{\eta}_{\mu}^{[\mathbf{m}+\mathbf{1}]} \Longrightarrow \hat{\mu}^{[\mathbf{m}+\mathbf{1}]}
$$

Boosting for GAMLSS models

- Boosting was recently extended to risk functions with multiple components (Schmid et al., 2010)
- Idea \triangleright Use partial derivatives instead of gradient
- Specify a set of base-learners - one base-learner per covariate
- Fit each of the base-learners separately to the partial derivatives
- Cycle through the partial derivatives within each boosting step

$$
\frac{\partial \rho}{\partial \eta_{\mu}}\left(y_{i}, \hat{\mu}^{[m]}, \hat{\sigma}^{[m]}, \hat{\nu}^{[m]}, \hat{\tau}^{[m]}\right)
$$

$$
\frac{\partial \rho}{\partial \eta_{\boldsymbol{\sigma}}}\left(y_{i}, \hat{\mu}^{[\mathbf{m}+1]}, \hat{\sigma}^{[m]}, \hat{\nu}^{[m]}, \hat{\tau}^{[m]}\right)
$$

$$
\hat{\eta}_{\mu}^{[m+1]} \Longrightarrow \hat{\mu}^{[m+1]}
$$

$$
\hat{\eta}_{\sigma}^{[\mathbf{m}+1]} \Longrightarrow \hat{\sigma}^{[\mathbf{m}+1]},
$$

Boosting for GAMLSS models

- Boosting was recently extended to risk functions with multiple components (Schmid et al., 2010)
- Idea \triangleright Use partial derivatives instead of gradient
- Specify a set of base-learners - one base-learner per covariate
- Fit each of the base-learners separately to the partial derivatives
- Cycle through the partial derivatives within each boosting step

$$
\begin{aligned}
& \frac{\partial \rho}{\partial \eta_{\mu}}\left(y_{i}, \hat{\mu}^{[m]}, \hat{\sigma}^{[m]}, \hat{\nu}^{[m]}, \hat{\tau}^{[m]}\right) \\
& \frac{\partial \rho}{\partial \eta_{\boldsymbol{\sigma}}}\left(y_{i}, \hat{\mu}^{[\mathbf{m}+1]}, \hat{\sigma}^{[m]}, \hat{\nu}^{[m]}, \hat{\tau}^{[m]}\right) \\
& \frac{\partial \rho}{\partial \eta_{\boldsymbol{\nu}}}\left(y_{i}, \hat{\mu}^{[\mathbf{m}+\mathbf{1}]}, \hat{\sigma}^{[\mathbf{m}+\mathbf{1}]}, \hat{\nu}^{[m]}, \hat{\tau}^{[m]}\right) \\
& \hat{\eta}_{\mu}^{[\mathbf{m}+1]} \Longrightarrow \hat{\mu}^{[\mathbf{m}+1]}, \\
& \hat{\eta}_{\sigma}^{[\mathbf{m}+1]} \Longrightarrow \hat{\sigma}^{[\mathbf{m}+1]}, \\
& \xrightarrow[\text { best fitting } B L]{\text { update }} \\
& \hat{\eta}_{\nu}^{[m+1]} \Longrightarrow \hat{\nu}^{[\mathbf{m}+1]},
\end{aligned}
$$

Boosting for GAMLSS models

- Boosting was recently extended to risk functions with multiple components (Schmid et al., 2010)
- Idea \triangleright Use partial derivatives instead of gradient
- Specify a set of base-learners - one base-learner per covariate
- Fit each of the base-learners separately to the partial derivatives
- Cycle through the partial derivatives within each boosting step

$$
\begin{aligned}
& \frac{\partial \rho}{\partial \eta_{\mu}}\left(y_{i}, \hat{\mu}^{[m]}, \hat{\sigma}^{[m]}, \hat{\nu}^{[m]}, \hat{\tau}^{[m]}\right) \\
& \frac{\partial \rho}{\partial \eta_{\boldsymbol{\sigma}}}\left(y_{i}, \hat{\mu}^{[\mathbf{m}+\mathbf{1}]}, \hat{\sigma}^{[m]}, \hat{\nu}^{[m]}, \hat{\tau}^{[m]}\right) \\
& \frac{\partial \rho}{\partial \eta_{\nu}}\left(y_{i}, \hat{\mu}^{[\mathbf{m}+\mathbf{1}]}, \hat{\sigma}^{[\mathbf{m}+\mathbf{1}]}, \hat{\nu}^{[m]}, \hat{\tau}^{[m]}\right) \\
& \frac{\partial \rho}{\partial \eta_{\boldsymbol{\tau}}}\left(y_{i}, \hat{\mu}^{[\mathbf{m}+\mathbf{1}]}, \hat{\sigma}^{[\mathbf{m}+\mathbf{1}]}, \hat{\nu}^{[\mathbf{m}+1]}, \hat{\tau}^{[m]}\right) \\
& \xrightarrow[\text { best fitting BL }]{\text { update }} \\
& \hat{\eta}_{\nu}^{[m+1]} \Longrightarrow \hat{\nu}^{[m+1]}, \\
& \xrightarrow[\text { best fitting } B L]{\text { update }} \\
& \hat{\eta}_{\tau}^{[\mathbf{m}+1]} \Longrightarrow \hat{\tau}^{[\mathbf{m}+1]} .
\end{aligned}
$$

Variable selection and shrinkage

- The main tuning parameter are the stopping iterations $m_{\text {stop }, k}$. They control variable selection and the amount of shrinkage.
- If boosting is stopped before convergence only the most important variables are included in the final model.
- Variables that have never been selected in the updated step, are excluded.
- Due to the small increments added in the update step, boosting incorporates shrinkage of effect sizes (compare to LASSO), leading to more stable predictions.
- For large $m_{\text {stop }, k}$ boosting converges to the same solution as the original algorithm (in low-dimensional settings).
- The selection of $m_{\text {stop }, k}$ is normally based on resampling methods, optimizing the predictive risk.

Data example: Munich rental guide

To deal with heteroscedasticity, we chose a three-parametric t-distribution with

$$
\mathbb{E}(y)=\mu \quad \text { and } \quad \mathbb{V a r}(y)=\sigma^{2} \frac{\mathrm{df}}{\mathrm{df}-2}
$$

For each of the parameters μ, σ, and df, we consider the candidate predictors

$$
\begin{aligned}
\eta_{\mu_{i}} & =\beta_{0 \mu}+x_{i}^{\top} \beta_{\mu}+f_{1, \mu}\left(\operatorname{size}_{i}\right)+f_{2, \mu}\left(\text { year }_{i}\right)+f_{\text {spat }, \mu}\left(s_{i}\right) \\
\eta_{\sigma_{i}} & =\beta_{0 \sigma}+x_{i}^{\top} \beta_{\sigma}+f_{1, \sigma}\left(\operatorname{size}_{i}\right)+f_{2, \sigma}\left(\text { year }_{i}\right)+f_{\text {spat }, \sigma}\left(s_{i}\right) \\
\eta_{\mathrm{df}_{i}} & =\beta_{0 \mathrm{df}}+x_{i}^{\top} \beta_{\mathrm{df}}+f_{1, \mathrm{df}}\left(\operatorname{size}_{i}\right)+f_{2, \mathrm{df}}\left(\text { year }_{i}\right)+f_{\text {spat }, \mathrm{df}}\left(s_{i}\right) .
\end{aligned}
$$

Base-learners

- Categorical variables: Simple linear models
- Continuous variables: P-splines
- Spatial variable: Gaussian MRF (Markov random fields)

Package gamboostLSS

- Boosting for GAMLSS models is implemented in the R package gamboostLSS (\triangleright now available on CRAN).
- Package relies on the well tested and mature boosting package mboost.
- Lots of the mboost infrastructure is available in gamboostLSS as well (e.g., base-learners \& convenience functions).

Package gamboostLSS

- Boosting for GAMLSS models is implemented in the R package gamboostLSS (\triangleright now available on CRAN).
- Package relies on the well tested and mature boosting package mboost.
- Lots of the mboost infrastructure is available in gamboostLSS as well (e.g., base-learners \& convenience functions).

Now let's start and have a short look at some code!

Package gamboostLSS

```
> ## Install package mboost: (we use the R-Forge version as the
> ## bmrf base-learner is not yet included in the CRAN version)
> install.packages("mboost",
+ repos = "http://r-forge.r-project.org")
> ## Install and load package gamboostLSS:
> install.packages("gamboostLSS")
> library("gamboostLSS")
```


(Simplified) code to fit the model

```
> ## Load data first, and load boundary file for spatial effects
```

> \#\# Now set up formula:
> form <- paste(names(data)[1], " ~ ",
paste(names (data) [-c(1, 327, 328, 329)], collapse = " + "),
" + bbs(wfl) + bbs(bamet) + bmrf(region, bnd = bound)")
> form <- as.formula(form)
> form
nmqms ~ erstbezg + dienstwg + gebmeist + gebgruen + hzkohojn +
... +
bbs(wfl) + bbs(bamet) + bmrf(region, bnd = bound)
> \#\# Fit the model with (initially) 100 boosting steps
> mod <- gamboostLSS(formula = form, families = StudentTLSS(),
control $=$ boost_control(mstop $=100$,
trace $=$ TRUE),
baselearner = bols,
data = data)
[1] .. -- risk: 3294.323
[41] .. -- risk: 3091.206
[81]
Final risk: 3038.919

(Simplified) code to fit the model (ctd.)

```
> ## optimal number of boosting iterations fund by 3-dimensional
> ## cross-validation on a logarithmic grid resulted in
> ## 750 (mu), 108 (sigma), 235 (df) steps;
> ## Let model run until these values:
>mod[c(750, 108, 235)]
>
> ## Let's look at the number of variables per parameter:
> sel <- selected(mod)
> lapply(sel, function(x) length(unique(x)))
$mu
[1] }11
$sigma
[1] 31
$df
[1] 7
> ## (Very) sparse model (only 115, 31 and 5 base-learners out of 328)
```


(Simplified) code to fit the model (ctd.)

```
> ## Now we can look at the estimated parameters
> ## e.g., the effect of roof terrace on the mean
> coef(mod, which = "dterasn", parameter = "mu")
$'bols(dterasn)'
    (Intercept) dterasn
-0.004254606 0.293792997
> ## We can also easily plot the estimated smooth effects:
> plot(mod, which = "bbs(wfl)", parameter = "mu",
+ xlab = "flat size (in square meters)", type = "l")
```


Results: spatial effects

GAMLSS: μ

-0.4648	0	0.4616

GAMLSS: σ

Estimated spatial effects obtained for the high-dimensional GAMLSS for distribution parameters μ and σ. For the third parameter df , the corresponding variable was not selected.

Results: prediction intervals

95\% prediction intervals based on the quantiles of the modeled conditional distribution. Coverage probability GAMLSS 93.93\% (92.07-95.80); coverage probability GAM 92.23% (89.45-94.32).

Summary

- As gamboostLSS relies on mboost, we have a well tested, mature back end.
- The base-learners offer great flexibility when it comes to the type of effects (linear, non-linear, spatial, random, monotonic, ...).
- Boosting is feasible even if $p \gg n$.
- Variable selection is included in the fitting process. Additional shrinkage leads to more stable results.

The algorithm is implemented in the \mathbf{R} add-on package gamboostLSS
\triangleright now available on CRAN.

Further literature

\triangleright Mayr, A., N. Fenske, B. Hofner, T. Kneib and M. Schmid, (2010). GAMLSS for high-dimensional data - a flexible approach based on boosting. Journal of the Royal Statistical Society, Series C (Applied Statistics), accepted.
\triangleright B. Hofner, A. Mayr, N. Fenske, and M. Schmid, (2010). gamboostLSS: Boosting Methods for GAMLSS Models. R package version 1.0-1.

- Bühlmann, P. and Hothorn, T., (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22, 477-522.
- Rigby, R. A. and Stasinopoulos, D. M., (2005). Generalized additive models for location, scale and shape. Applied Statistics, 54, 507-554.
- Schmid, M., S. Potapov, A. Pfahlberg and T. Hothorn, (2010). Estimation and regularization techniques for regression models with multidimensional prediction functions. Statistics and Computing, 20, 139-150.

