Beta Regression: Shaken, Stirred, Mixed, and Partitioned

Achim Zeileis, Francisco Cribari-Neto, Bettina Grün
Overview

- Motivation
- Shaken or stirred: Single or double index beta regression for mean and/or precision in betareg
- Mixed: Latent class beta regression via flexmix
- Partitioned: Beta regression trees via party
- Summary
Motivation

Goal: Model dependent variable $y \in (0, 1)$, e.g., rates, proportions, concentrations etc.

Common approach: Model transformed variable \tilde{y} by a linear model, e.g., $\tilde{y} = \text{logit}(y)$ or $\tilde{y} = \text{probit}(y)$ etc.

Disadvantages:
- Model for mean of \tilde{y}, not mean of y (Jensen’s inequality).
- Data typically heteroskedastic.

Idea: Model y directly using suitable parametric family of distributions plus link function.

Specifically: Maximum likelihood regression model using alternative parametrization of beta distribution (Ferrari & Cribari-Neto 2004).
Beta regression

Beta distribution: Continuous distribution for $0 < y < 1$, typically specified by two shape parameters $p, q > 0$.

Alternatively: Use mean $\mu = p/(p + q)$ and precision $\phi = p + q$.

Probability density function:

$$f(y) = \frac{\Gamma(p + q)}{\Gamma(p) \Gamma(q)} y^{p-1} (1 - y)^{q-1}$$

$$= \frac{\Gamma(\phi)}{\Gamma(\mu \phi) \Gamma((1 - \mu) \phi)} y^{\mu \phi - 1} (1 - y)^{(1-\mu) \phi - 1}$$

where $\Gamma(\cdot)$ is the gamma function.

Properties: Flexible shape. Mean $E(y) = \mu$ and

$$\text{Var}(y) = \frac{\mu (1 - \mu)}{1 + \phi}.$$
Beta regression

$\phi = 5$

$\phi = 100$
Beta regression

Regression model:

- Observations $i = 1, \ldots, n$ of dependent variable y_i.
- Link parameters μ_i and ϕ_i to sets of regressor x_i and z_i.
- Use link functions g_1 (logit, probit, ...) and g_2 (log, identity, ...).

\[
\begin{align*}
g_1(\mu_i) &= x_i^\top \beta, \\
g_2(\phi_i) &= z_i^\top \gamma.
\end{align*}
\]

Inference:

- Coefficients β and γ are estimated by maximum likelihood.
- The usual central limit theorem holds with associated asymptotic tests (likelihood ratio, Wald, score/LM).
Implementation in R

Model fitting:
- Package **betareg** with main model fitting function `betareg()`.
- Interface and fitted models are designed to be similar to `glm()`.
- Model specification via formula plus data.
- Two part formula, e.g., `y ~ x1 + x2 + x3 | z1 + z2`.
- Log-likelihood is maximized numerically via `optim()`.
- Extractors: `coef()`, `vcov()`, `residuals()`, `logLik()`, ...

Inference:
- Base methods: `summary()`, `AIC()`, `confint()`.
- Methods from **lmtest** and **car**: `lrtest()`, `waldtest()`, `coeftest()`, `linearHypothesis()`.
- Moreover: Multiple testing via **multcomp** and structural change tests via **strucchange**.
Illustration: Reading accuracy

- 44 Australian primary school children.
- Dependent variable: Score of test for reading accuracy.
- Regressors: Indicator dyslexia (yes/no), nonverbal iq score.

Analysis:
- OLS for transformed data leads to non-significant effects.
- OLS residuals are heteroskedastic.
- Beta regression captures heteroskedasticity and shows significant effects.
Illustration: Reading accuracy

```r
> data("ReadingSkills", package = "betareg")
> rs_ols <- lm(qlogis(accuracy) ~ dyslexia * iq, +    data = ReadingSkills)
> coeftest(rs_ols)

```

```
t test of coefficients:

                Estimate Std. Error t value Pr(>|t|)
(Intercept)     1.60107    0.22586   7.088  1.41e-08 ***
dyslexia        -1.20563    0.22586  -5.338  4.01e-06 ***
iq               0.35945    0.22548   1.594   0.119  
dyslexia:iq     -0.42286    0.22548  -1.875  0.068  .
```

```
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```r
> bptest(rs_ols)

studentized Breusch-Pagan test

data: rs_ols
BP = 21.692, df = 3, p-value = 7.56e-05
```
Illustration: Reading accuracy

```r
> rs_beta <- betareg(accuracy ~ dyslexia * iq | dyslexia + iq, + data = ReadingSkills)
> coef_test(rs_beta)

z test of coefficients:

|                | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------|----------|------------|---------|----------|
| (Intercept)    | 1.12323  | 0.14283    | 7.8638  | 3.725e-15 *** |
| dyslexia       | -0.74165 | 0.14275    | -5.1952 | 2.045e-07 *** |
| iq             | 0.48637  | 0.13315    | 3.6528  | 0.0002594 *** |
| dyslexia:iq    | -0.58126 | 0.13269    | -4.3805 | 1.184e-05 *** |
| (phi)_(Intercept) | 3.30443  | 0.22274    | 14.8353 | < 2.2e-16 *** |
| (phi)_dyslexia | 1.74656  | 0.26232    | 6.6582  | 2.772e-11 *** |
| (phi)_iq       | 1.22907  | 0.26720    | 4.5998  | 4.228e-06 *** |

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Extensions: Partitions and mixtures

So far: Reuse standard inference methods for fitted model objects.

Now: Reuse fitting functions in more complex models.

Model-based recursive partitioning: Package party.
- Idea: Recursively split sample with respect to available variables.
- Aim: Maximize partitioned likelihood.
- Fit: One model per node of the resulting tree.

Latent class regression, mixture models: Package flexmix.
- Idea: Capture unobserved heterogeneity by finite mixtures of regressions.
- Aim: Maximize weighted likelihood with k components.
- Fit: Weighted combination of k models.
Beta regression trees

Partitioning variables: dyslexia and further random noise variables.

```r
> set.seed(1071)
> ReadingSkills$x1 <- rnorm(nrow(ReadingSkills))
> ReadingSkills$x2 <- runif(nrow(ReadingSkills))
> ReadingSkills$x3 <- factor(rnorm(nrow(ReadingSkills)) > 0)
```

Fit beta regression tree: In each node accuracy’s mean and precision depends on iq, partitioning is done by dyslexia and the noise variables x1, x2, x3.

```r
> rs_tree <- betatree(accuracy ~ iq | iq,
+ ~ dyslexia + x1 + x2 + x3,
+ data = ReadingSkills, minsplit = 10)
> plot(rs_tree)
```

Result: Only relevant regressor dyslexia is chosen for splitting.
Beta regression trees

Node 2 (n = 25)

Node 3 (n = 19)
Latent class beta regression

Setup:

- No dyslexia information available.
- Look for $k = 3$ clusters: Two different relationships of type $\text{accuracy} \sim \text{iq}$, plus component for ideal score of 0.99.

Fit beta mixture regression:

```r
> rs_mix <- betamix(accuracy ~ iq, data = ReadingSkills, k = 3,
+                  nstart = 10, extra_components = extraComponent(
+                  type = "uniform", coef = 0.99, delta = 0.01))
```

Result:

- Dyslexic children separated fairly well.
- Other children are captured by mixture of two components: ideal reading scores, and strong dependence on iq score.
Latent class beta regression
Latent class beta regression
Latent class beta regression
Latent class beta regression

![Graph showing accuracy vs IQ with two lines and scattered data points]

- Accuracy on the y-axis, IQ on the x-axis.
- Two lines: one representing a linear relationship and the other a non-linear (sigmoid) relationship.
- Scattered data points indicating the distribution of accuracy at different IQ values.
Computational infrastructure

Model-based recursive partitioning:

- **party** provides the recursive partitioning.
- **betareg** provides the models in each node.
 - Model-fitting function: `betareg.fit()` (conveniently without formula processing).
 - Extractor for empirical estimating functions (aka scores or case-wise gradient contributions): `estfun()` method.
 - Some additional (and somewhat technical) S4 glue...

Latent class regression, mixture models:

- **flexmix** provides the E-step for the EM algorithm.
- **betareg** provides the M-step.
 - Model-fitting function: `betareg.fit()`.
 - Extractor for case-wise log-likelihood contributions: `dbeta()`.
 - Some additional (and somewhat more technical) S4 glue...
Summary

Beta regression and extensions:
- Flexible regression model for proportions, rates, concentrations.
- Can capture skewness and heteroskedasticity.
- R implementation `betareg`, similar to `glm()`.
- Due to design, standard inference methods can be reused easily.
- Fitting functions can be plugged into more complex fitters.
- Convenience interfaces available for: Model-based partitioning, finite mixture models.
References

