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Motivation and Problem Statement

• a problem in portfolio optimization:
decide between “Value” and “Growth” strategies

• empirical evidence:
deviations from “Black Scholes World”:
 skewness and high kurtosis, fat tails, autocorrelation

• parsimonious approach:
retain normality piecewise but let unobservable regime
switching process decide on model parameters

 Markov Switching Models (MSM) or

Hidden Markov Models (HMM)
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Definition of HMM in general

• two layer model in discrete or continuous time
• unobservable state process Xt (layer 1): finite state space;

Markovian
• observation process Yt (layer 2): with discrete or continuous

values; distribution depends on state process;

Our HMM: Markov Driven Gaussian Mixtures
• discrete time
• states: ergodic, homogenous Markov chain;

models economic regimes;
transition probabilities Π = πs1,s2 = P(Xt = s1|Xt−1 = s2)
number S of states 2–4

• observations: given state Xt , Yt are Gaussian

Yt ∼
∑S

s=1
IXt=s N (µs ,Σs)
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Estimation Problem and EM-Algorithm

Goal: want to estimate parameters θ = ((µs)s , (Σs)s ,Π) from Yt

Method: EM-Algorithm = two stage procedure

(init) define initial values for θ
(E) reconstruct states for fixed θ

— here: compute Pθ(Xt = s|Y1, . . . ,Yd)
 filtering [d = t]

(and maybe smoothing [d = T ] → ForwardBackward-Algo)

(M) determine θ by max. (filtered/smoothed) likelihood
(only Π =̂ Baum-Welch-Algo)

iterate (E) and (M) until convergence (or just a few times)

if only filtering: online version; otherwise offline
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Elliott (1994) Algorithm:
Online-EM Algo specialized to our case

• uses that Xt is interpretable as process with martingale
increments

• applies discrete version of Girsanov’s theorem to boil down to
iid situation

• obtains simple (linear) recursive filters for all ingredients
needed in M-step to compute θ, i.e.

– states Xt

– occupation and jump times of the Markov chain
– auxiliary processes X 2

t , XtXt−1
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Model deviations: Types of Outliers (see Fox (1972))

exogenous outliers affecting only singular observations

SO :: y re
t ∼ (1− rSO)L(y id

t ) + rSOL(ydi
t )

endogenous outliers / structural changes

IO :: v re
t ∼ (1− rIO)L(v id

t ) + rIOL(vdi
t )

but also trends, level shifts

Here: focus on exogenous outlier
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Evidence for Robustness Issue in Asset Allocation Pb
clean data
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Evidence for Robustness Issue in Asset Allocation Pb II
considerable SO outliers at t = 40, 80, 130, 140
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Evidence for Robustness Issue in Asset Allocation Pb III
severe SO outliers at t = 40, 80, 130, 140
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Robustification (work in progress)

• let y re = (1− U)y id + Uydi, U ∼ Bin(r), U := {L(y re)}

• problem: find reconstruction f (y re) of y id with criterion

[minmax-SO] maxU Ere |y id − f (y re)|2 = minf !

[Lem5-SO] Eid |y id − f (y re)|2 = minf ! s.t. supU
∣∣Ere f (y re)

∣∣ ≤ b

Theorem ([Minmax-SO], [Lem5-S0], (R.[10]))

(1) There is a saddlepoint (f0, P̃Y
0 ) for Problem [minmax-SO]

f0(y) := E[y id] + Hρ
(
D(y re)

)
, Hb(x) = x min{1, b/|x |}

P̃Y
0 (dy) := 1−r

r
(
∣∣D(y)

∣∣/ρ − 1)+ PY id
(dy)

where D(y) = y re − E[y id] and ρ > 0 ensures that
∫

P̃Y
0 (dy) = 1.

(2) f0 also is the solution to Problem [Lem5-SO] for b = ρ.

11



Robustification (work in progress)

• let y re = (1− U)y id + Uydi, U ∼ Bin(r), U := {L(y re)}

• problem: find reconstruction f (y re) of y id with criterion

[minmax-SO] maxU Ere |y id − f (y re)|2 = minf !

[Lem5-SO] Eid |y id − f (y re)|2 = minf ! s.t. supU
∣∣Ere f (y re)

∣∣ ≤ b

Theorem ([Minmax-SO], [Lem5-S0], (R.[10]))

(1) There is a saddlepoint (f0, P̃Y
0 ) for Problem [minmax-SO]

f0(y) := E[y id] + Hρ
(
D(y re)

)
, Hb(x) = x min{1, b/|x |}

P̃Y
0 (dy) := 1−r

r
(
∣∣D(y)

∣∣/ρ − 1)+ PY id
(dy)

where D(y) = y re − E[y id] and ρ > 0 ensures that
∫

P̃Y
0 (dy) = 1.

(2) f0 also is the solution to Problem [Lem5-SO] for b = ρ.

11



Robustification (work in progress)

• let y re = (1− U)y id + Uydi, U ∼ Bin(r), U := {L(y re)}

• problem: find reconstruction f (y re) of y id with criterion

[minmax-SO] maxU Ere |y id − f (y re)|2 = minf !

[Lem5-SO] Eid |y id − f (y re)|2 = minf ! s.t. supU
∣∣Ere f (y re)

∣∣ ≤ b

Theorem ([Minmax-SO], [Lem5-S0], (R.[10]))

(1) There is a saddlepoint (f0, P̃Y
0 ) for Problem [minmax-SO]

f0(y) := E[y id] + Hρ
(
D(y re)

)
, Hb(x) = x min{1, b/|x |}

P̃Y
0 (dy) := 1−r

r
(
∣∣D(y)

∣∣/ρ − 1)+ PY id
(dy)

where D(y) = y re − E[y id] and ρ > 0 ensures that
∫

P̃Y
0 (dy) = 1.

(2) f0 also is the solution to Problem [Lem5-SO] for b = ρ.

11



Robustification (work in progress)

• let y re = (1− U)y id + Uydi, U ∼ Bin(r), U := {L(y re)}

• problem: find reconstruction f (y re) of y id with criterion

[minmax-SO] maxU Ere |y id − f (y re)|2 = minf !

[Lem5-SO] Eid |y id − f (y re)|2 = minf ! s.t. supU
∣∣Ere f (y re)

∣∣ ≤ b

Theorem ([Minmax-SO], [Lem5-S0], (R.[10]))

(1) There is a saddlepoint (f0, P̃Y
0 ) for Problem [minmax-SO]

f0(y) := E[y id] + Hρ
(
D(y re)

)
, Hb(x) = x min{1, b/|x |}

P̃Y
0 (dy) := 1−r

r
(
∣∣D(y)

∣∣/ρ − 1)+ PY id
(dy)

where D(y) = y re − E[y id] and ρ > 0 ensures that
∫

P̃Y
0 (dy) = 1.

(2) f0 also is the solution to Problem [Lem5-SO] for b = ρ.

11



Robustification of Steps(E), (M)

recall: Hb(x) = x min{1, b/|x |}

Girsanov step

• likelihood ratio λs :=
σ−1
Xs−1

ϕ
(

(ys−µXs−1
)σ−1

Xs−1

)
ϕ(ys)

• robustification: λ̄s = Eid λs + Hb(λs − Eid λs) for suitably chosen b

E-step
• replace Ĝ by Ḡ = Eid Ĝ + Hb(Ĝ − Eid Ĝ ), Ĝ any filtered process G

M-Step
• MCD + MLTS: takes up regression ideas
• MWLS: weighted least squares
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Implementation to R: Existing Packages

• depmixS4 (Visser and Speekenbrink, 2010)

– discrete time; finite state space, general observation space
– provides ForwardBackward-Algo, simulation (S4 classes)

• HMM (Scientific Software Development - Dr. Lin Himmelmann and www.linhi.com, 2010)

– discrete time; finite state space, finite observation space
– provides Viterbi, Baum-Welch algo, simulation

• msm (Jackson, 2011)

– continuous time; finite state space
– provides Viterbi algo, simulation

• RHmm (Taramasco and Bauer, 2011)

– discrete time; finite state space, conditionally Gaussian
observations

– three settings: 2-state HMM, 3-state HMM, 2-state normal
mixture HMM

– provides Viterbi and ForwardBackward algorithm, simulation
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Package robHMM —work in progress

Concept: strictly modular architecture

• functions specified through interface

 can easily be substituted by robust alternatives

• control parameters again specified in generating functions

remains to be done

• documentation

• unit tests

• vignette for how to write own functions

• to be moved to Rforge, R-Forge Administration and
Development Team (2011)
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robHMM: State so far

• functions
– mainloopElliott() main “loop” in the Elliott algorithm
– step functions for Elliott Algo (with prescribed

signature/return value)
? lambda()change of measure
? filterHMM()filter functions
? estimateHMM()parameter estimation

• classes
– HMM model class
– HMMfit result of the Elliott Algo

• methods
– simulate(): simulation of (Gaussian) MSM (with outliers)
– filter(), predict(), smooth()methods for HMM-fit
– plot()method for (filtered/smoothed/predicted) HMM-fit
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Application to Investment Strategies for Asset Allocation

joint work of C.E. with Rogemar Mamon and Matt Davison, University West Ontario

Problem Statement
• want to decide between investing in value or growth stocks
• goal: optimal investment strategy to maximize terminal wealth
• data: Russell 3000 Value and Russell 3000 Growth indices

Jun 1995–Aug 2008 in non-overlapping windows of 41 weeks

Approach
• model discretely observed assets (more precisely the diff of their log’s)

by Gaussian MSM
• produce model-based one-step ahead forecast of indices
• discuss pure, switching and mixing strategies
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Comparison of strategies in bootstrapped samples

Mean return
Strategy Mean 95% conf.int.

(1.0e-004*) (1.0e-004*)
Switch 8.65 [ 8.43, 8.87]
Mix 7.70 [ 7.50, 7.90]
Growth 6.12 [ 5.87, 6.36]
Value 9.16 [ 8.95, 9.36]
Russell 2.40 [ 2.33, 2.47]
Mean-Var 5.88 [ 5.66, 6.10]

Var return
Strategy Mean 95% conf.int.

(1.0e-004*) (1.0e-004*)
Switch 6.57 [ 6.55, 6.60]
Mix 5.57 [ 5.55, 5.59]
Growth 7.72 [ 7.69, 7.74]
Value 5.11 [ 5.09, 5.13]
Russell 1.17 [ 1.16, 1.17]
Mean-Var 6.31 [ 6.29, 6.33]

Sharpe ratio
Strategy Mean 95% conf.int.

(1.0e-002*) (1.0e-002*)
Switch 0.96 [ 0.88, 1.05]
Mix 0.60 [ 0.51, 0.68]
Growth −0.04 [−0.12, 0.05]
Value 1.33 [ 1.24, 1.42]
Russell −4.33 [−4.39,−4.27]
Mean-Var −0.12 [−0.21,−0.03]

Bootstrap analysis for 10,000 simulations and 1bps transaction cost
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Thank you for your attention!
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