Using **R** for the Analysis of Bird Demography on a Europe-wide Scale

Christian Kampichler, Henk van der Jeugd, Alison Johnston, Rob Robinson, Stephen Baillie

vogeltrekstation

Bird populations are dynamic in space and time

Examples:

decline of farmland birds

Bird populations are dynamic in space and time

Examples:

- decline of farmland birds
- decline of migratory passerines

Bird populations are dynamic in space and time

Examples:

- decline of farmland birds
- decline of migratory passerines
- increase of waterfowl

Population changes attributed to:

- climatic change (phenological shift, ...)
- land use and land cover change
- conditions on staging and wintering grounds

Population changes attributed to:

climatic change (phenological shift, ...)

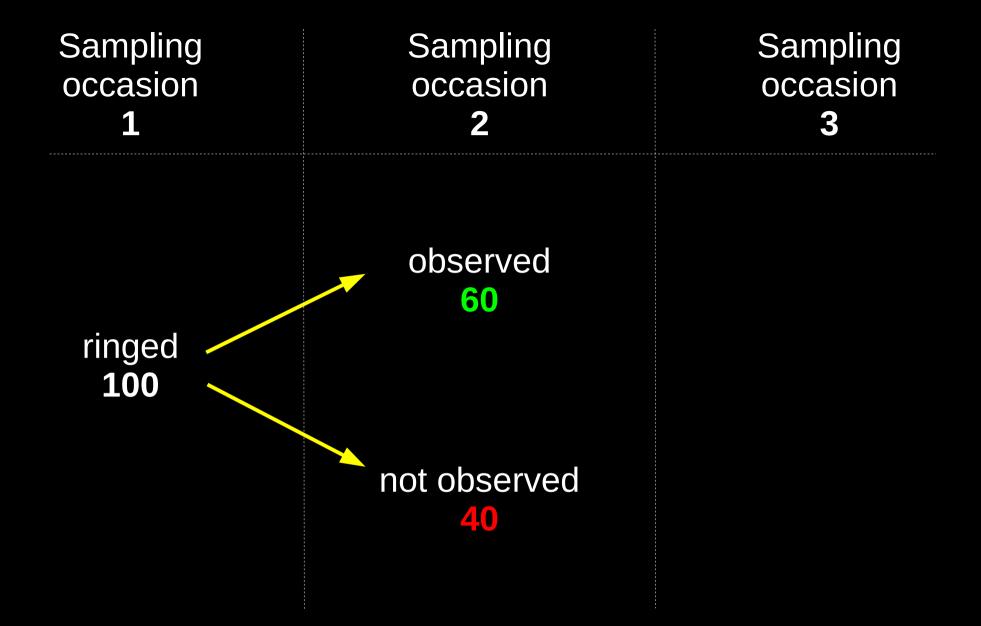
land use and land cover change

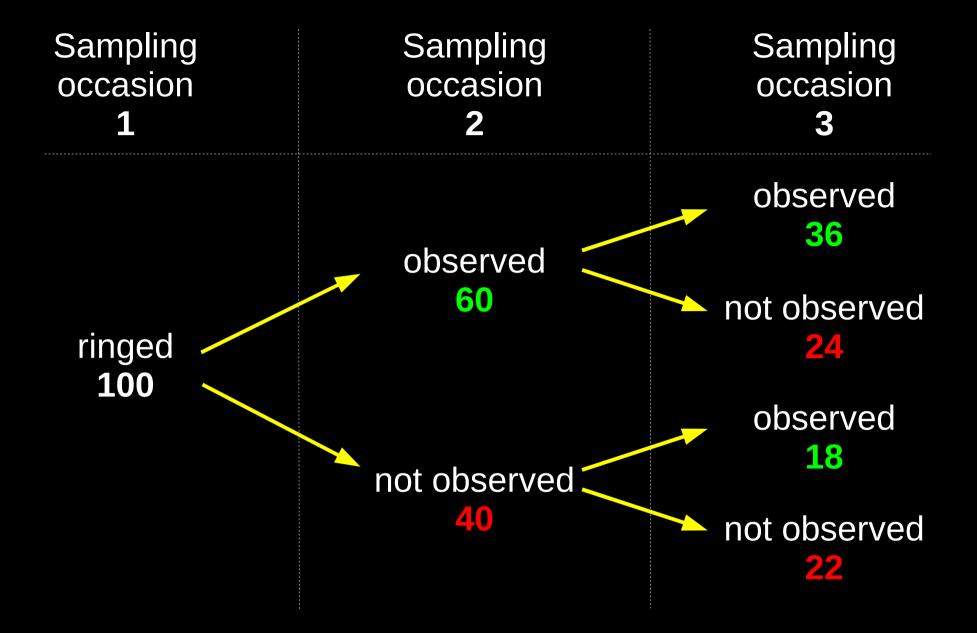
conditions on staging and wintering grounds

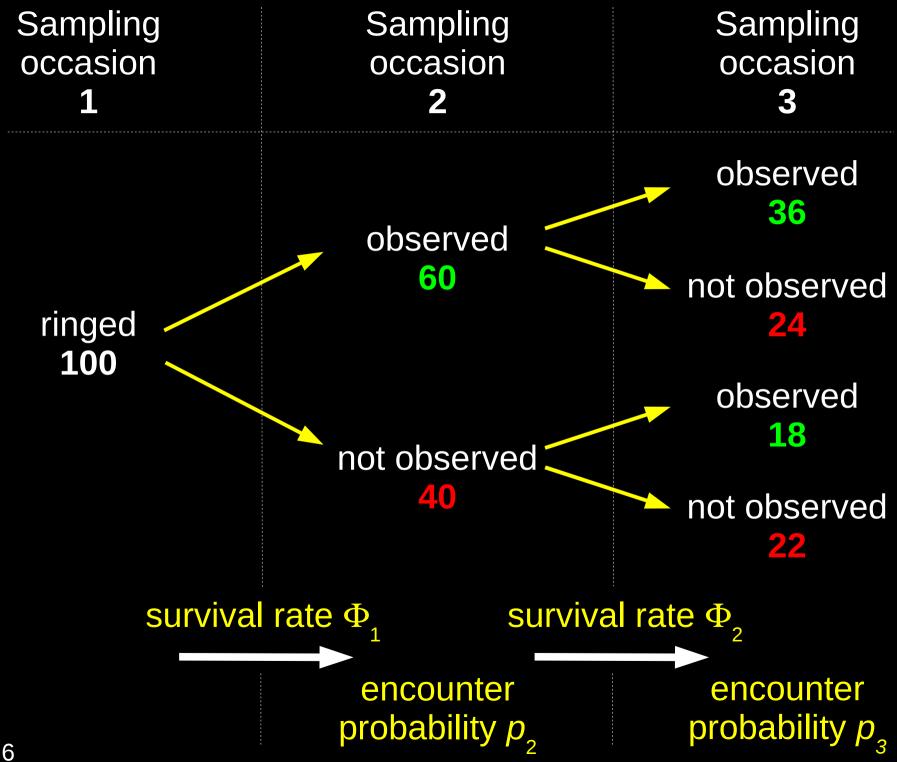
Proximate causes for abundance changes:

reproductive success

survival rate

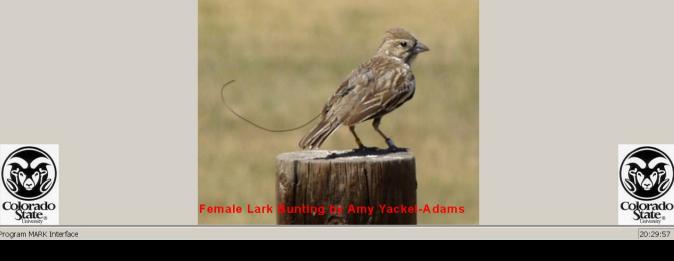



bird capture



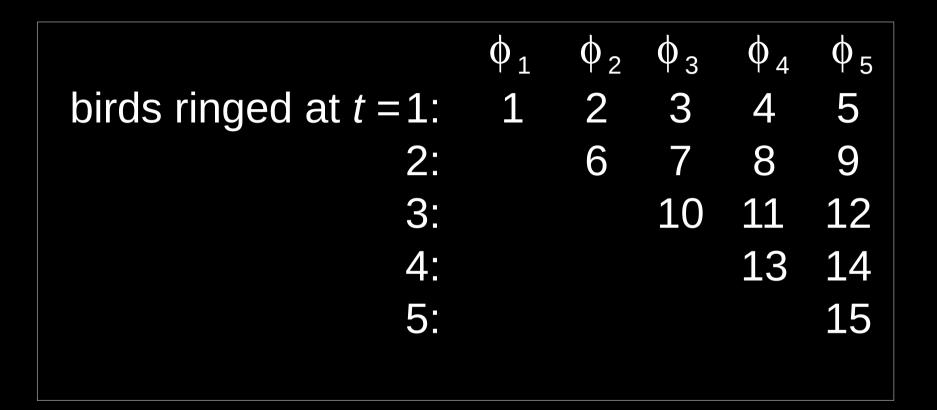
ring application

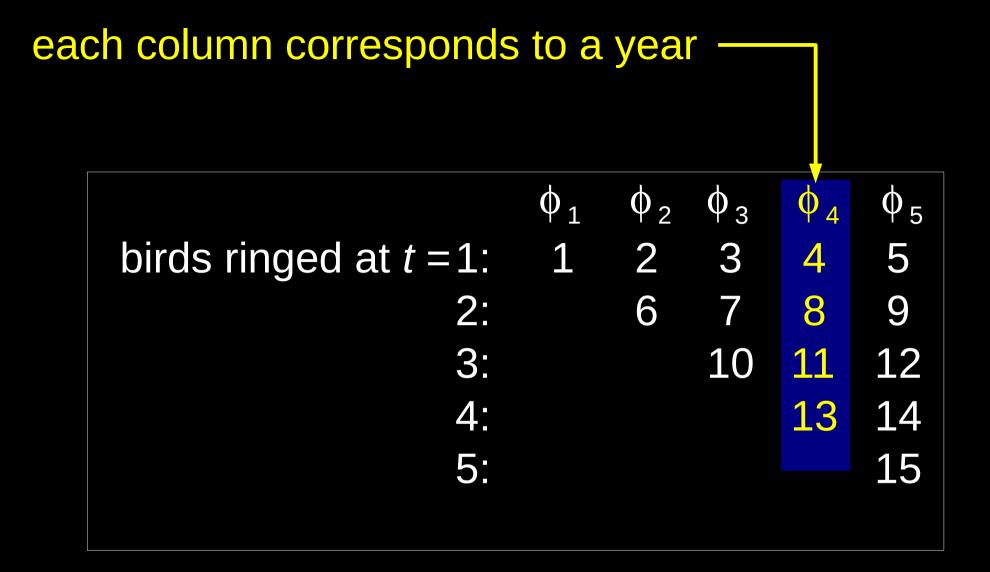
Sampling occasion 1	Sampling occasion 2	Sampling occasion 3
ringed 100		

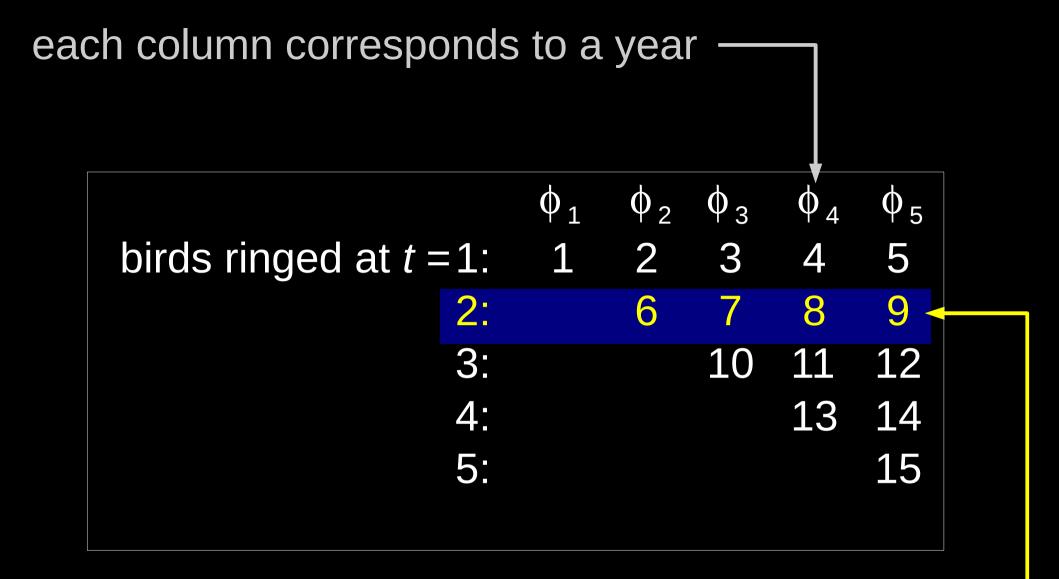

encounter history frequency probability

- 111 36 $\Phi_1 \rho_2 \Phi_2 \rho_3$ 110 24 $\Phi_1 \rho_2 (1 - \Phi_2 \rho_3)$ 101 18 $\Phi_1 (1 - \rho_2) \Phi_2 \rho_3$ 100 22 $1 - \Phi_1 \rho_2 - \Phi_1 (1 - \rho_2) \Phi_2 \rho_3$
- $\ln L(\Phi_1, \rho_2, \Phi_2, \rho_3) = 36 \ln(\Phi_1 \rho_2 \Phi_2 \rho_3) + 24 \ln(\Phi_1 \rho_2 (1 \Phi_2 \rho_3)) + 18 \ln(\Phi_1 (1 \rho_2) \Phi_2 \rho_3) + 22 \ln(1 \Phi_1 \rho_2 \Phi_1 (1 \rho_2) \Phi_2 \rho_3)$

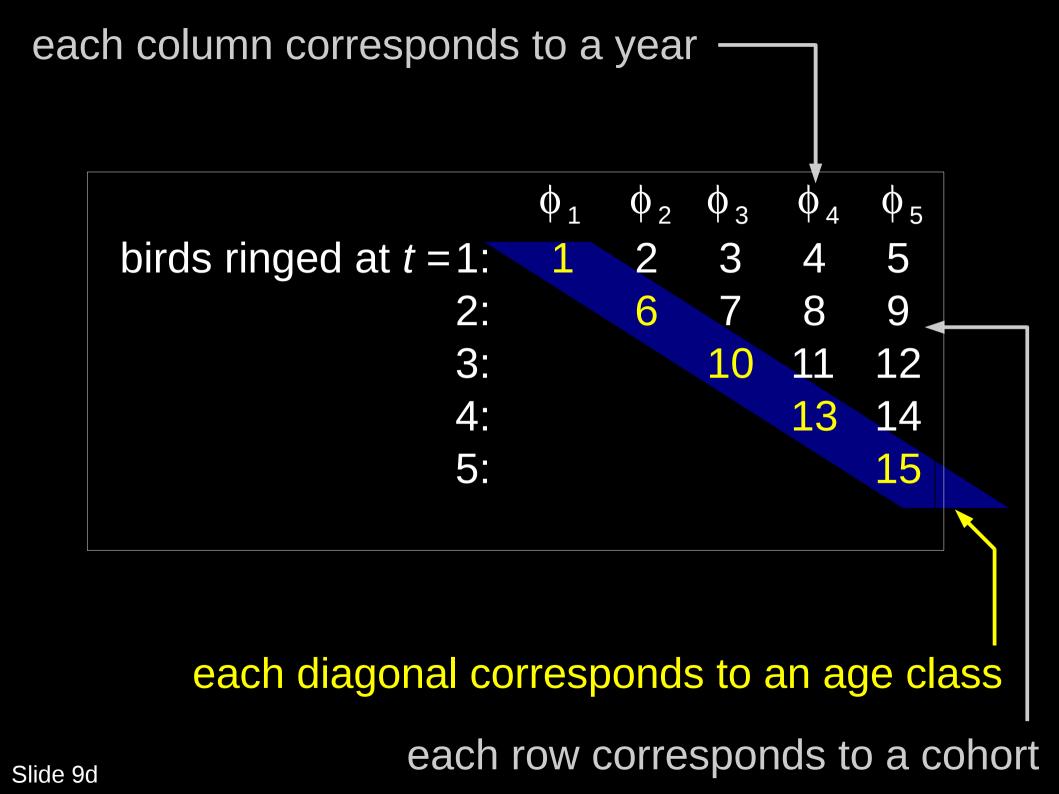
🛍 😂 ?

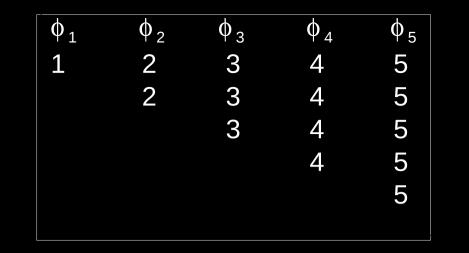

Program MARK


You can obtain context-sensitive help with the F1 key, and can investigate objects with the Shift-F1 key. See the Help menu for known problems.

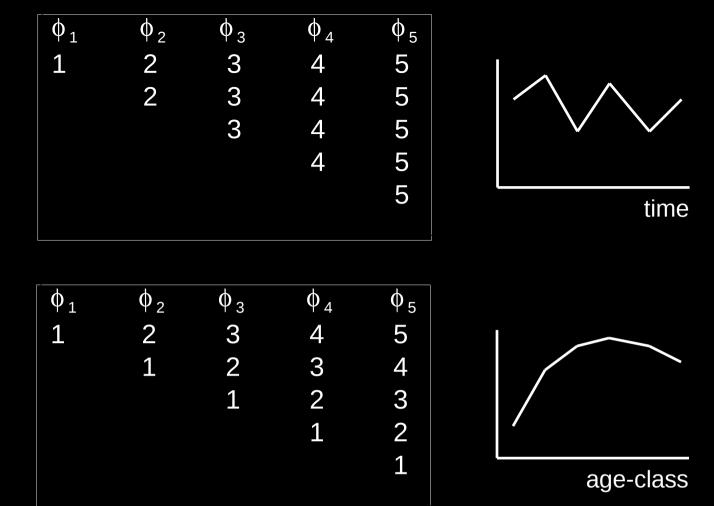


Gary White (Colorado State University)


The MARK Parameter Index Matrix (PIM)



each row corresponds to a cohort



Time-specific model

Time-specific model

Age-specific model

Time-specific model

 ϕ_1

1

\$₂

2

0

ф₃

3

0

\$_4

4

 ϕ_5

5

Age-specific model

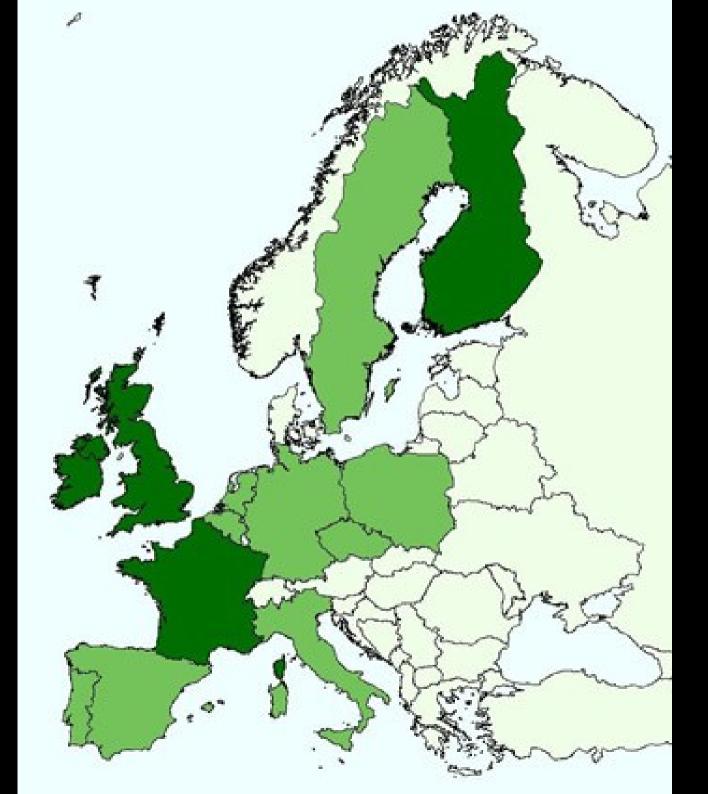
Time and two age-classes

time

The MARK Design Matrix

IN D Etiles WAADV// Examples has he I DDE E DA . . .

Progra	Program MARK Interface (C: Program Files MARK\Examples\ed.DBF) - [Design Matrix Specification: Live Recaptures (CJS)]															
🧭 Eile 🛛 🖉	nDo R <u>e</u> Do	AddCol	DelCol E	illCol <u>A</u> ppe	earance Run	PIM Browse	<u>Window H</u> e	elp								
Design Matrix Specification (B = Beta)																
B1: Phi Int	B2: Phig1	B3: Phi t1	B4: Phit2	B5: Phit3	B6: Phig1*t1	B7: Phig1*t2	B8: Phig1*t3	Parm	B9: pInt	B10: pg1	B11: pt1	B12: p t2	B13: pt3	B14: pg1*t1	B15: p g1*t2	B16: p g1*t3
1	1	1	0	0	1	0	0	1:Phi	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	2:Phi	0	0	0	0	0	0	0	0
1	1	0	0	1	0	0	1	3:Phi	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	4:Phi	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	5:Phi	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	6:Phi	0	0	0	0	0	0	0	0
		100	120			2 C C C C C C C C C C C C C C C C C C C			1.2.0						102	


1	0	1	0	0	0	0	0	5:Phi	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	6:Phi	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	7:Phi	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	8:Phi	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	9:p	1	1	1	0	0	1	0	0
0	0	0	0	0	0	0	0	10:p	1	1	0	1	0	0	1	0
0	0	0	0	0	0	0	0	11:p	1	1	0	0	1	0	0	1
0	0	0	0	0	0	0	0	12:p	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	13:p	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	14:p	1	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	15:p	1	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	16:p	1	0	0	0	0	0	0	0

The MARK Design Matrix

🥙 Program MARK Interface (C:\Program Files\MARK\Examples\ed.DBF) - [Design Matrix Specification: Live Recaptures (CJS)] 🛛

🧭 File UnDo ReDo AddCol DelCol FillCol Appearance Run PIM Browse <u>W</u> indow Help																
m 🖾 🖁																
	Design Matrix Specification (B = Beta)															
B1: Phi Int	B2: Phig1	B3: Phi t1	B4: Phit2	B5: Phit3	B6: Phig1*t1	B7: Phig1*t2	B8: Phig1*t3	Parm	B9: pInt	B10: pg1	B11: pt1	B12: pt2	B13: pt3	B14: pg1*t1	B15: pg1*t2	B16: p g1*t3
1	1	1	0	0	1	0	0	1:Phi	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	2:Phi	0	0	0	0	0	0	0	0
1	1	0	0	1	0	0	1	3:Phi	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	4:Phi	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	5:Phi	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	6:Phi	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	7:Phi	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	8:Phi	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	9:p	1	1	1	0	0	1	0	0
0	0	0	0	0	0	0	0	10:p	1	1	0	1	0	0	1	0
0	0	0	0	0	0	0	0	11:p	1	1	0	0	1	0	0	1
0	0	0	0	0	0	0	0	12:p	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	13:p	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	14:p	1	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	15:p	1	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	16:p	1	0	0	0	0	0	0	0

Development of even moderately complex models is tedious and errorprone because the parameter structure and design matrix are created by hand. Constant Effort Site schemes in Europe

 RMark is a collection of R functions that are used as an interface to MARK for capture-recapture analysis.

- RMark is a collection of R functions that are used as an interface to MARK for capture-recapture analysis.
- RMark runs models in terms of formula.

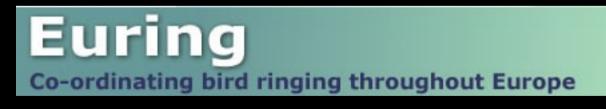
- RMark is a collection of R functions that are used as an interface to MARK for capture-recapture analysis.
- RMark runs models in terms of formula.
- RMark constructs the PIMs and design matrices and <u>automates model development</u>.

- RMark is a collection of R functions that are used as an interface to MARK for capture-recapture analysis.
- RMark runs models in terms of formula.
- RMark constructs the PIMs and design matrices and <u>automates model development</u>.
- RMark creates the MARK input files, invokes MARK and extracts the results.

- RMark is a collection of R functions that are used as an interface to MARK for capture-recapture analysis.
- RMark runs models in terms of formula.
- RMark constructs the PIMs and design matrices and <u>automates model development</u>.
- RMark creates the MARK input files, invokes MARK and extracts the results.

Further advantage for Europe-wide cooperation of CES network:

 Entire analyses can be written, documented and exchanged as scripts.


- allows the standardisation of statistical analyses

- allows the standardisation of statistical analyses
- allows the standardisation of the presentation of results

- allows the standardisation of statistical analyses
- allows the standardisation of the presentation of results
- facilitates access to statistical analysis for national schemes with small staff or little analytical experience

- allows the standardisation of statistical analyses
- allows the standardisation of the presentation of results
- facilitates access to statistical analysis for national schemes with small staff or little analytical experience

Workshops on how to use R in the analysis of bird demography: demonstration and exchange of scripts, presentation of the prototype of an R package specifically designed for CES data,...

Thank

you

1 Ch