The **binomTools** package: Performing model diagnostics on binomial regression models

Authors: Rune Haubo B Christensen and Merete K Hansen

DTU Informatics Mathematical Statistics Technical University of Denmark mkh@imm.dtu.dk

August 18th 2011

Introduction	Implemented in R	binomTools	Perspectives	
00000	000	000000	O	
Outline				

1 Introduction

3 Functionality in the binomTools package

Perspectives

Introduction	Implemented in R	binomTools	Perspectives	
●0000	000	000000	0	
Binary data				

Binary data

- dichotomous outcome
- yes/no, 0/1, success/failure, etc...
- e.g. $y_1 = 0, y_2 = 1, ..., y_n = 0$

Binomial data

- grouped binary data
- no. of successes / group size, e.g. $y_1 = 3/63, y_2 = 10/65, ..., y_n = 60/62$
- not possible to group binary data if all observations have distinct covariance structures

Introduction	Implemented in R	binomTools	Perspectives	
0●000	000	000000	O	

Example: Flour beetle mortality data

> head	(flour	beet	les,	n=10)
type	dose	у	n	
DDT	2.00	3	50	
DDT	2.64	5	49	
DDT	3.48	19	47	
DDT	4.59	19	50	
DDT	6.06	24	49	
DDT	8.00	35	50	
g-BHC	2.00	2	50	
g-BHC	2.64	14	49	
g-BHC	3.48	20	50	
g-BHC	4.59	27	50	

> head(flourbeetles

Introduction	Implemented in R	binomTools	Perspectives	
00●00	000	000000	0	
Fit model				

Aim: model proportion of beetles dead after exposure

$$p_i = y_i/n_i$$

How:

• We fit a generalized linear model with a binomial family:

$$g(p_i) = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki},$$

where $g(\cdot)$ is the link function

- Logistic regression model: special case with link function $g(p_i) = \text{logit}(p_i) = \log\left(\frac{p_i}{1-p_i}\right)$
- Binomial regression model: Various link functions

Introduction	Implemented in R	binom Tools	Perspectives	
000●0	000	000000	O	
Fit model in	R			

```
> beetles.glm <- glm(cbind(y, n-y) ~ type + log(dose),</pre>
+
                    family=binomial, data=beetles)
> summary(beetles.glm)
. . .
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.5553 0.3611 -12.613 < 2e-16 ***
typeboth 3.1305 0.2522 12.413 < 2e-16 ***
typeg-BHC 0.7128 0.1981 3.598 0.00032 ***
log(dose)
            2.6958 0.2157 12.498 < 2e-16 ***
. . .
   Null deviance: 413.648 on 17 degrees of freedom
Residual deviance: 21.282 on 14 degrees of freedom
AIC: 92.753
```

. . .

Introduction	Implemented in R	binom Tools	Perspectives	
0000●	000	000000	O	
Diagnostics				

- Model building: iterative process of alternately model fitting and model checking
- Model inadequacy comes in several forms
 - Incorrect specification of linear predictor
 - Incorrect specification of link function
 - Discrepant observations, termed outliers
 - Distributional assumptions violated
- Aim of binomTools: a toolbox of diagnostic methods for binomial regression models

Introduction	Implemented in R	binom Tools	Perspectives	
00000	●00	000000	0	
Existing implementations				

Main functionality in R

- Various **residual types** with residuals, rstandard and rstudent
- Some **residual plots** with plot(object.glm) and glm.diag.plots from the **boot** package
- Leverage and influence measures, such as dfbeta, dfbetas, Cooks's distance with influence.measures
- Half-normal plot without envelopes in package faraway et al.
- binom.diagnostics in the MLDS package
- **car** package: A comprehensive body of **diagnostic plots** useful for examining various forms of model inadequacy
- Other implementations that (to our knowledge) only occurs sporadically

Introduction	Implemented in R	binomTools	Perspectives	
00000	○●○	000000	O	
Residuals in	R			

- Three different methods for extraction of residuals
 - residuals extracts **unstandardized** deviance, Pearson, working, response and partial residuals
 - rstandard extracts **standardized** deviance and Pearson residuals
 - rstudent extracts **studentized** residuals
- Confusion terminology

Introduction	Implemented in R	binom Tools	Perspectives	
00000	00●	000000	0	
It goes by	many names			

A quick litterature search reveals

- Standardized Pearson residuals also called
 - studentized Pearson residuals
 - standardized residuals
 - studentized residuals
 - internally studentized residuals
- Studentized residuals
 - likelihood residuals
 - externally studentized residuals
 - deleted studentized residuals
 - jack-knife residuals

No exact definitions in the residual help files

Introduction	Implemented in R	binomTools	Perspectives	End matter
00000	000	●00000	O	00
Residuals.glr	m in binomToo	ls		

Method to extract residuals from a binomial regression model

Residuals(object, type = c("approx.deletion", "exact.deletion", "standard.deviance", "standard.pearson", "deviance", "pearson", "working", "response", "partial"))

- approx.deletion extracted with rstudent
- exact.deletion (new function)
- standard.deviance extracted with rstandard
- standard.pearson extracted with rstandard
- remainder extracted with residual

Aim: Uniform syntax, enhance transparency of residual types and improve help pages with formulas

	Introduction 00000	Implemented in R 000	binomTools 0●0000	Perspectives 0	
Exact deletion residuals		on residuals			

- New type of residual implemented in binomTools
- approx.deletion (rstudent) residuals are approximations to deletion (studentized) residuals
- exact.deletion are exact deletion (studentized) residuals
- Change in deviance when one observation in turn is deleted from the data
- May be computationally heavy for large data sets

Introduction	Implemented in R	binomTools	Perspectives	
00000	000	00●000	O	

Parallel histograms

- Explorative version of Hosmer-Lemeshow goodness-of-fit test (with fixed cutpoints)
- Related to confusion table
- Empicirical cumulative distribution function (ecdf) curves and empirical ROC curve also available

Introduction	Implemented in R	binomTools	Perspectives	
00000	000	000●00	O	
Half norma	l plat			

Half-normal plot

Expected value of half-normal order statistic

- Half-normal plot uses absolute residual values but otherwise equivalent to a normal plot
- Optional simulated envelopes to support interpretation

Introduction	Implemented in R	binomTools	Perspectives	
00000	000	0000●0	O	
Profile likeli	hood			

- Possible to assess the profile likelihood with profile from the MASS package
- Returns and plot the profile likelihood root not the profile likelihood
- New plot method in **binomTools** with enhanced plot functionality (examples shown for another data set)

Introduction	Implemented in R	binomTools	Perspectives	
00000	000	00000●	0	
Miscellaneou	IS			

- Possibility to group binary or not completely grouped data data based on a specified covariate structure
- Goodness-of-fit tests HLtest and X2GOFtest
- Implementation of Rsq a newly proposed R-square
- Empirical logit transform empLogit useful when at least one observation is zero or one

Future implementations in binomTools

- Enhance functionality of existing implementations
- ungroup data from binomial to binary form
- Empirical area under the ROC curve
- Add a generalized link function with some standard link functions as special cases. Facilitates assessment of proper specification of the link function
- Other ideas are welcome

Introduction	Im	plemented in R	binomTools	Perspectives	End matter
00000	oc		000000	O	●○

Acknowledgments

Thank you for listening

Introduction	Implemented in R	binom Tools	Perspectives	End matter
00000	000	000000	0	○●
References				

References

- Atkinson A.C. (1981). Two graphical displays for outlying and influential observations in regression. *Biometrika*, 68, 13-20.
- Collett D. (2003). *Modelling binary data*. Second edition. Chapman & Hall/CRC
- Fox J. and Weisberg S. (2011). An R Companion to Applied Regression. Second Edition. Sage Publications.
- Hosmer D.W. and Lemeshow S. (1980). Goodness of fit tests for the multiple logistic regression model. *Communications in Statistics Theory and Methods*, **A9**(10), 1043-1069.
- Pawitan Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press.
- Tjur T. (2009). Coefficients of determination in logistic regression models a new proposal: The coefficient of discrimination. *The American Statistician*, **63**(4), 366-372
- Venables W.N. and Ripley B.D. (2002). *Modern Applied Statistics with S.* Fourth Edition. Springer
- Williams D.A. (1987). Generalized linear model diagnostics using the deviance and single case deletions. *Applied Statistics* **36**, 181-191