Simple haplotype analyses in R

Benjamin French, PhD Department of Biostatistics and Epidemiology University of Pennsylvania **bcfrench@upenn.edu**

useR! 2011 University of Warwick 18 August 2011

Goals

- To integrate haplotypes into large association studies such that haplotype imputation is done once as a data-processing step
 - Case-control studies (binary outcome)
 - Prospective studies (censored survival outcome)
- To allow haplotype associations to be estimated in general-purpose statistical software (eg R) by researchers expert in the subject matter

"In world historical terms there is a lot to be said for keeping data analysis out of the hands of statisticians"

— Thomas Lumley

Goals

- To integrate haplotypes into large association studies such that haplotype imputation is done once as a data-processing step
 - Case-control studies (binary outcome)
 - Prospective studies (censored survival outcome)
- To allow haplotype associations to be estimated in general-purpose statistical software (eg R) by researchers expert in the subject matter

"In world historical terms there is a lot to be said for keeping data analysis out of the hands of statisticians"

— Thomas Lumley

Phase ambiguity

- Observed data is composed of a set of unphased genotypes
- Diplotype (pair of haplotypes) may be ambiguous; may not know which allele was transmitted from maternal or paternal chromosome
- Missing data problem; impute the unobserved diplotype

Expectation-maximization (EM) algorithm

- E: calculate expected phase given haplotype frequencies
- M: calculate MLEs for haplotype frequencies given phase
- Software: haplo.stats [Sinnwell and Schaid, 2009]

Bayesian inference

- Observed genotype data combined with expected haplotype patterns
- Haplotypes estimated from posterior distribution
- Software: PHASE [Stephens and Donnelly, 2003]

Diplotype uncertainty

Angiotensin II receptor type 1 (AGTR1)							
		Haplotype	Diplotype				
Label	Haplotype	frequency	probability				
D	TCCACGCATCTT	0.139	0.81				
F	TCTGTGCATCTC	0.290					
С	TCCACGCATCTC	0.034	0.19				
G	TCTGTGCATCTT	0.272					
Rare	TCCGCGCATCTC	< 0.001	< 0.01				
Rare	TCTATGCATCTT	< 0.001					

Estimating associations

Non-iterative weighted estimation [French et al., 2006]

- 1. Impute haplotypes and estimate population haplotype frequencies
- 2. Create multi-record data for each individual
 - Design matrix: set of diplotypes consistent with observed genotype, possibly including environmental exposures
 - Weights equal to conditional probability of each diplotype

Weight	А	В	С	D	Е	F	G	Н	Ι	Rare
0.81	0	0	0	1	0	1	0	0	0	0
0.19	0	0	1	0	0	0	1	0	0	0
< 0.01	0	0	0	0	0	0	0	0	0	2

3. Estimate associations using a weighted regression model

- Logistic regression for binary outcomes
- Cox regression for censored survival outcomes
- Robust or sandwich standard error estimator
- Account for uncertainty in phase

Estimating associations

Non-iterative weighted estimation [French et al., 2006]

- 1. Impute haplotypes and estimate population haplotype frequencies
- 2. Create multi-record data for each individual
 - Design matrix: set of diplotypes consistent with observed genotype, possibly including environmental exposures
 - Weights equal to conditional probability of each diplotype

Weight	А	В	С	D	Е	F	G	Н	Ι	Rare
0.81	0	0	0	1	0	1	0	0	0	0
0.19	0	0	1	0	0	0	1	0	0	0
< 0.01	0	0	0	0	0	0	0	0	0	2

- 3. Estimate associations using a weighted regression model
 - Logistic regression for binary outcomes
 - Cox regression for censored survival outcomes
 - Robust or sandwich standard error estimator
 - Account for uncertainty in phase

Simulation study

Angiotensin II receptor type 1 (AGTR1)

Label	Haplotype	Frequency	log HR
А	ATTATGCATCTC	0.029	$-\log 2.0$
В	ATTATGTGATCC	0.051	— log 1.75
С	TCCACGCATCTC	0.027	log 1.25
D	TCCACGCATCTT	0.090	log 1.5
E	TCTGTGCAACTT	0.029	— log 1.25
F*	TCTGTGCATCTC	0.223	—
G	TCTGTGCATCTT	0.188	$-\log 1.5$
Н	TTTACACATCTC	0.038	log 1.75
I	TTTACACATCTT	0.032	log 2.0

* Referent

n = 500, 25% censoring

Simulation results

CLCNKA haplotypes and adverse events in chronic heart failure

- Regulate renal potassium channels to control blood pressure
- SNP associated with heart failure in a large case-control study [Cappola et al., 2011]
- Genotypes available for 1150 genetically inferred Caucasians with heart failure enrolled in a prospective study
- 70% male; median age at study entry, 58 years
- 14 pre-selected SNPs Inferred 10 common haplotypes (frequency > 0.02)
- 65% had an unambiguous diplotype
 90% had a highest posterior probability > 0.765

CLCNKA haplotypes and adverse events in chronic heart failure

- Outcome: time to all-cause mortality or cardiac transplantation
 - Median follow-up, 3 years; maximum, 5 years
 - 22% experienced an adverse event
- Non-iterative weighted estimation with Cox regression
 - Included all diplotypes consistent with observed genotype
 - Weighted by conditional probability of each diplotype
 - Stratified by 4-level classification for disease severity
 - Adjusted for gender, age, heart failure etiology, clinical site
 - Time-varying covariate for age (exhibited non-proportional hazards)
 - Robust variance estimator for standard error estimation

Application results

Label	Haplotype	Frequency	HR (95% CI)	Р
Q	AGAGCGAGACGAGG	0.036	1.19 (0.80, 1.77)	0.39
R	AGAGCGAGGGAAGG	0.160	1.04 (0.80, 1.35)	0.79
S	AGAGCGGAGCAAGA	0.036	1.20 (0.80, 1.77)	0.38
Т	AGCGAGAGGCAAGA	0.066	0.55 (0.34, 0.88)	0.01
U	GACGCGGAGCGCGG	0.063	0.80 (0.53, 1.20)	0.28
V	GGAACAAGGGAAGG	0.037	0.49 (0.26, 0.92)	0.03
W	GGAACAGAGCAAGA	0.299	Referent	
Х	GGAACAGAGCAAGG	0.048	1.36 (0.95, 1.95)	0.09
Y	GGAGCAAGGCAAGG	0.050	1.15 (0.78, 1.69)	0.49
Z	GGCGCGGAGCAAGG	0.031	1.09 (0.62, 1.92)	0.76
Overal	l			0.02

Application results

Label	Haplotype	Frequency	HR (95% CI)	Р
Q	AGAGCGAGACGAGG	0.036	1.19 (0.80, 1.77)	0.39
R	AGAGCGAGGGAAGG	0.160	1.04 (0.80, 1.35)	0.79
S	AGAGCGGAGCAAGA		1.20 (0.80, 1.77)	0.38
Т	AGCGAGAGGCAAGA	0.066	0.55 (0.34, 0.88)	0.01
U	GACGCGGAGCGCGG	0.063	0.80 (0.53, 1.20)	0.28
V	GGAACA <mark>AG</mark> G <mark>G</mark> AAG <mark>G</mark>	0.037	0.49 (0.26, 0.92)	0.03
$\vee \vee$	GGAACAGAGCAAGA	0.299	Referent	
Х	GGAACAGAGCAAGG	0.048	1.36 (0.95, 1.95)	0.09
Y	GGAGCAAGGCAAGG		1.15 (0.78, 1.69)	0.49
Ζ	GGCGCGGAGCAAGG	0.031	1.09 (0.62, 1.92)	0.76
Overal				0.02

R packages: Non-iterative weighted estimation

haplo.ccs [French and Lumley, 2007]

- Weighted logistic regression for binary outcomes
- Depends on haplo.stats package to impute haplotypes
- Calls glm(..., family=quasibinomial(link=logit))
- Includes GEE-type sandwich standard error estimator

haplo.cph (in process)

- Weighted Cox regression for censored survival outcomes
- Will depend on haplo.stats package to impute haplotypes
- Will call cph(..., robust=TRUE) from Design package
- Allow stratification and time-varying exposures

• Non-iterative weighted estimation

- Valid tests for genetic associations
- Reliable estimates of modest genetic effects of common haplotypes
- Regression-based framework
 - Adjustment for or interaction with environmental exposures
 - Stratification and time-varying exposures in Cox regression
- Straightforward to implement in R
 - haplo.ccs for binary outcomes
 - haplo.cph for censored survival outcomes

Target

useR! 2011 14 / 17 Our method and/or software may not be applicable to

- Related individuals
- Rare haplotypes
- Small studies

Nandita Mitra, PhD

Department of Biostatistics and Epidemiology University of Pennsylvania

Thomas P Cappola, MD Penn Cardiovascular Institute University of Pennsylvania

Thomas Lumley, PhD Department of Statistics University of Auckland

References

- 1. Cappola TP, Matkovich SJ, et al. 2011. Loss-of-function DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc Natl Acad Sci U S A 108:2456–61.
- 2. French B, Lumley T. 2007. haplo.ccs: Estimate haplotype relative risks in case-control data. R package 1.3.
- 3. French B, Lumley T, et al. 2006. Simple estimates of haplotype relative risks in case-control data. Genet Epidemiol 30:485–94.
- 4. Sinnwell JP, Schaid DJ. 2009. haplo.stats: Statistical analysis of haplotypes with traits and covariates when linkage phase is ambiguous. R package version 1.4.4.
- Stephens M, Donnelly P. 2003. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–69.