

Weierstrass Institute for Applied Analysis and Stochastics

Statistical Parametric Maps for Functional MRI Experiments in R: The Package fmri

Karsten Tabelow

UseR!2011

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de · August 18, 2011

Images and Noise

Images and Noise

Image Denoising Methods

- Kernel estimators
- Wavelets, Curvelets, ...
- MCMC, SANN
- Diffusion methods
- Scale-space methods
- Scanner upgrade

Image Denoising Methods

- Kernel estimators
- Wavelets, Curvelets, ...
- MCMC, SANN
- Diffusion methods
- Scale-space methods
- Scanner upgrade

Structural Adaptive Smoothing

- Local parametric model for data
- Iterative estimation of parameters and homogeneity regions
- Dimension-free, structure preserving/enhancing

General setup / Local parametric model

Design: $x_1, \ldots, x_n \in \mathcal{X} \subseteq I\!\!R^p$

• Observations: $Y_1, \ldots, Y_n \in \mathcal{Y} \subset I\!\!R^q$

 $Y_i \sim \mathbf{P}_{\theta(x_i)} \qquad \theta : I\!\!R^p \to \Theta \quad \text{(i.i.d.)}$

General setup / Local parametric model

Design: $x_1, \ldots, x_n \in \mathcal{X} \subseteq \mathbb{R}^p$

Observations: $Y_1,\ldots,Y_n\in\mathcal{Y}\subset{I\!\!R}^q$

$$Y_i \sim \mathbf{P}_{\theta(x_i)} \quad \theta : I\!\!R^p \to \Theta \quad \text{(i.i.d.)}$$

Structural assumption

$$\exists$$
 Partitioning $\mathcal{X} = igcup_{m=1}^M \mathcal{X}_m$ such that

$$\theta(x) = \theta(x_i) \Leftrightarrow \exists m : x \in \mathcal{X}_m \land x_i \in \mathcal{X}_m$$

i.e. heta constant on each \mathcal{X}_m

Some components of θ may be global parameters.

General idea

Determine *structure* and *estimates* in an *iterative* procedure

• Weighting scheme
$$W(x_i) = (w_{i1}, \ldots, w_{in})$$

• $W(x_i)$ describes a local model

$$w_{ij}^{(k)} = K_{loc}(||x_i - x_j||^2 / h_k^2) \cdot K_s(s_{ij}^{(k)} / \lambda)$$

 s_{ij} measures the difference between estimates $\hat{ heta}(x_i)$ and $\hat{ heta}(x_j)$

- Four steps:
 - A) Initialize estimates $\hat{\theta}(x_i)$ and describe initial partitioning $W(x_i)$ ideally by observed values and $w_j(x_i) = w_{ij} = \delta_{ij}$
 - B) "Learn" about $\theta(x)$ from information on partitioning
 - **C**) "Learn" about partitioning from estimates $\hat{\theta}(x)$
 - D) Iterate while inspecting scale space from local to global

Results

Propagation under homogeneity: For a homogeneous situation and $\mu > 4$ the last step estimate $\hat{\theta}_i^{k^*}$ fulfills $P(\bar{N}_i^{(k^*)} \mathcal{K}(\hat{\theta}_i, \theta) > \mu \log(n)) \leq 2k^*/n$.

Propagation under local homogeneity: Similar results for interior points of local homogeneous regions.

- Stability of estimates: The quality of the best intermediate result holds (up to a constant) for the final estimate.
- Optimal adaptive rate of estimation under smoothness conditions on f_{θ} .
- Separation property

Parameters

- $\blacksquare \ \lambda$ can be selected by a *propagation condition*, independ of data
- \blacksquare k^* determines the maximum bandwidth
- $c_h = 1.25^{1/p}$ provides exponential growth of sum of location weights
- Kernels $K_{loc}(z) = (1 z)_+$ and $K_s(z) = \min(1, 2(1 z))_+$

Propagation condition

$$\begin{array}{ll} \hat{\theta}^{(k)}(x) & \text{PS estimate of } \theta(x) \mbox{ from iteration } k, \\ \tilde{\theta}^{(k)}(x) & \text{Kernel estimate of } \theta(x) \mbox{ using bandwidth } h^{(k)} \end{array}$$

Let $\theta(x) \equiv \theta$. Select parameters such that $\forall k$ and some $\alpha > 0$

$$\mathbf{E} |\hat{\theta}^{(\mathbf{k})}(\mathbf{x}) - \theta| \le (\mathbf{1} + \alpha) \mathbf{E} |\tilde{\theta}^{(\mathbf{k})}(\mathbf{x}) - \theta|.$$

Images and Noise

Images and Noise

Human Eye vs. Structural adaptive smoothing

- Human eye is a very good denoiser
- Experience: Structural adaptive smoothing compares well with eyes.
- Limited use for visual inspection and for volumetric (integral) quantities

Applications

- Suitable for higher dimensional data
- Structure enhancement, structure identification.
- functional MRI package fmri

How to smooth fMRI data?

- Blurring effect in Gaussian filter
- T2-volumes have limited structure.
- Local tests inefficient in 3D+T space
- Interesting structure is activation structure
- We have a model about HRF

Data Preparation

Registration

Motion correction

Normalization

Smoothing

Data Preparation	Linear Modeling
Registration	$Y = X\beta + \epsilon$
Motion correction	Prewhitening
Normalization	$\tilde{Y} = \tilde{X}\beta + \tilde{\epsilon}$
Smoothing	

Data Preparation	Linear Modeling	Smoothing	Thresholding
Registration	$Y = X\beta + \epsilon$		t-statistic
Motion correction	Prewhitening		multiple test problem
Normalization	$ ilde{Y} = ilde{X}eta + ilde{\epsilon}$	no filter	

Data Preparation	Linear Modeling	Smoothing	Thresholding
Registration	$Y = X\beta + \epsilon$		t-statistic
Motion correction	Prewhitening		FDR
Normalization	$ ilde{Y} = ilde{X}eta + ilde{\epsilon}$	no filter	

Data Preparation	Linear Modeling	Smoothing	Thresholding
Registration	$Y = X\beta + \epsilon$		t-statistic
Motion correction	Prewhitening		RFT
Normalization	$\tilde{Y} = \tilde{X}\beta + \tilde{\epsilon}$	no filter	

Data Preparation	Linear Modeling	Smoothing	Thresholding
Registration	$Y = X\beta + \epsilon$		t-statistic
Motion correction	Prewhitening		RFT
Normalization	$\tilde{Y} = \tilde{X}\beta + \tilde{\epsilon}$	Gaussian filter	

Data Preparation	Linear Modeling	Smoothing	Thresholding
Registration	$Y = X\beta + \epsilon$		t-statistic
Motion correction	Prewhitening		RFT
Normalization	$\tilde{Y} = \tilde{X}\beta + \tilde{\epsilon}$	adaptivel	

 (a) Signal location in Phantom data (3D) with different signal size 26 slices with 15 containing activations

Artificial fMRI data

- (a) Signal location in Phantom data (3D) with different signal size 26 slices with 15 containing activations
- (b) Relative proportion of detection using non adaptive smoothing

Artificial fMRI data

- (a) Signal location in Phantom data (3D) with different signal size 26 slices with 15 containing activations
- (b) Relative proportion of detection using non adaptive smoothing
- (c) Relative proportion of detection using Structural Adaptive Smoothing

Finger tapping fMRI data at different resolutions

How to integrate smoothing and testing in on step?

$$H : \max_{i \in V} \gamma_i \le \delta \quad (\text{or} \quad \max_{i \in V} |\gamma_i| \le \delta).$$
$$T(\hat{\Gamma}^{\mathcal{H}}) = \max_{h \in \mathcal{H}} \max_{i \in V} \frac{\left(\hat{\gamma}_i^{(h)} - \delta\right)}{a_{n(h)}(\nu)\sqrt{\hat{D}\hat{\gamma}_i^{(h)}}} - \frac{b_{n(h)}(\nu)}{a_{n(h)}(\nu)}$$

Structural adaptation

- Distribution of $T(\hat{\Gamma}^{\mathcal{H}})$ under hypotheses by simulation, determine critical values
- Inspect scale space sequentially and segment as soon as critical value is exceeded
- Use adaptive smoothing as long as Hypothesis not rejected

FMRI analysis

library(fmri);library(adimpro);

```
ds <- read.NIFTI("Imagination.nii")
anatomic <- extract.data(ds)[,,,1]
```

```
scans <- 105
onsets <- c(16, 46, 76)
duration <- 15
tr <- 2
hrf <- fmri.stimulus(scans, onsets, duration, tr)
x <- fmri.design(hrf)
som <- fmri.lm(ds, x)
```

spm.segment <- fmri.smooth(spm, hmax = 4, adaptation = "segment")

```
ds.ana <- read.NIFTI("MPRAGEco.nii")
for (slice in 2:30) {
    img <- plot(spm.segment, ds.ana, slice = slice)
    write.image(make.image(img, gammatype="ITU"), file=paste("result", slice, ".png", sep=""))
```


Conclusions

Package fmri

- Structural adaptive smoothing for fMRI (using RFT)
- Structural adaptive segmentation for fMRI
- Package fmri: I/O (cf. oro.nifti)
- Package fmri: Linear Modeling
- Package fmri: Smoothing
- Package fmri: Signal detection
- Package fmri: Publication ready images
- Package fmri: No group analysis
- Cf. packages arf3DS4, AnalyzeFMRI, neuRosim, cudaBayesreg

Collaborations

Joint Work with:

- Jörg Polzehl and Vladimir Spokoiny, WIAS and MATHEON
- Henning U. Voss, Weill Medical College, Cornell University

Cooperation:

- Citigroup Biomedical Imaging Center, Weill Medical College, Cornell University
- BNIC, Charité, Berlin

R-Community:

CRAN Task View: Medical Image Analysis

Acknowledgments:

We thank the Weill Medical College, Cornell University (HUV), for providing functional and diffusion-weighted MR datasets.

Bibliography

K. Tabelow, J. Polzehl, H.U. Voss, V. Spokoiny (2006).

Analyzing fMRI experiments with structural adaptive smoothing procedures. *Neuroimage*, 33(1): 55–62.

K. Tabelow, V. Piëch, J. Polzehl, H.U. Voss (2009).

High-resolution fMRI: Overcoming the signal-to-noise problem. *Journal of Neuroscience Methods*, 178(2): 357–365.

J. Polzehl, H.U. Voss, K. Tabelow (2010).

Structural adaptive segmentation for statistical parametric mapping. *Neuroimage*, 52(2): 515–523.

K. Tabelow, J. Polzehl (2011).

Statistical parametric maps for functional MRI experiments in R: The package fmri. Journal of Statistical Software, 44(11): 1–21 Special Volume of Journal of Statistical Software "MRI in R".

