

Challenges of working with a large database of routinely collected health data: Combining SQL and R

Joanne Demmler¹, Caroline Brooks¹, Sarah Rodgers¹, Frank Dunstan², Ronan Lyons¹

- Swansea University Health Information Research Unit College of Medicine Grove Building Singleton Park Swansea SA2 8PP
- Cardiff University
 Department of Primary Care
 & Public Health
 Neuadd Meirionnydd
 Heath Park
 Cardiff CF14 4YS

College of Medicine Coleg Feddygaeth

Swansea University Prifysgol Abertawe

HIRU and the SAIL database

- HIRU the Health Information Research Unit
- SAIL Secure Anonymous Information Linkage
- Main aim of HIRU is to realise the potential of electronically-held, routinely-collected, personbased data to conduct and support health-related studies
- The SAIL databank already holds over 1.9 billion anonymised and encrypted individual-level records, from a range of sources relevant to health and well-being

Appropriate use of patient and personal information

How can these data be made available for research?

- In accordance with the principles of Information Governance
- To ensure data security, integrity and quality
- To maintain data usefulness

SAIL references:

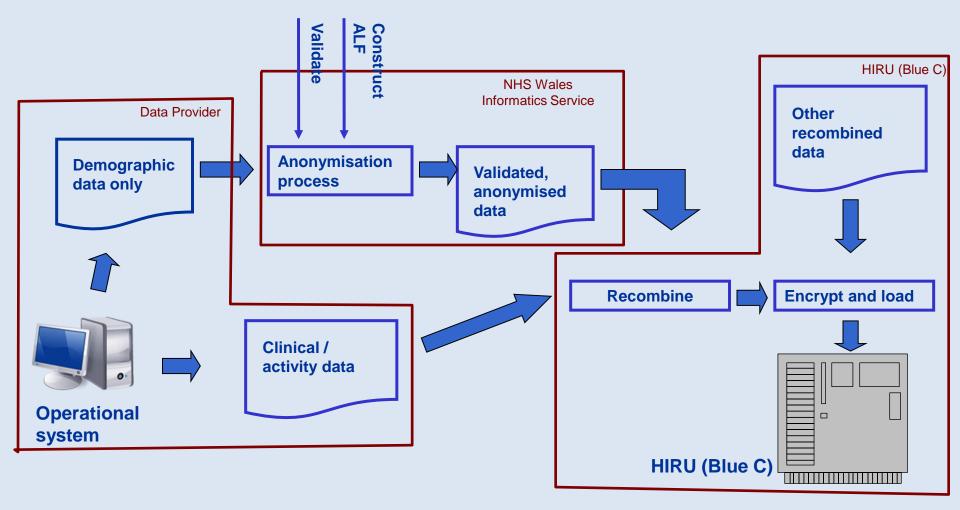
Ford et al. (2009). The SAIL Databank: building a national architecture for ehealth research and evaluation. *BMC Health Serv Res, 9*, 157.

Lyons et al. (2009). The SAIL databank: linking multiple health and social care datasets. *BMC Med Informat Decis Making, 9*, 3.

Trusted Third Party

NHS Wales Informatics Service (NWIS) SAIL does not receive identifiable data

- Handle demographic data
- Matching and anonymisation


Secure data transport

Data security

- Disclosure control
- Data access controls
- Scrutiny of data utilisation proposals
- External verification of compliance with IG

HIRU methodology

Working with the SAIL gateway

All analysis is done within the SAIL gateway

- data analysts retrieve data through SQL code from DB2 databank on Blue C replacement servers
- researchers analyse data using SPSS, STATA or R

- Files are moved into the gateway using a FTP client
 - no internet access within the gateway

Files are requested out of the gateway through a review process

- screening for potentially identifiable data

Why use R?

- Running SQL queries and creating tables
 - users do have restricted command line access to DB2
 - no access to advanced SQL options such as procedures
 - Brilliant way to create multiple SQL tables, e.g.
 for loop & paste command
- Evaluation and pre-cleaning of raw data
 - no need to create temporary tables in SQL or copy query results into different software package
- Programming heavy analysis
 - biomarkers
 - data mining (RWeka)

Challenges when working with R and SAIL – PART 1

- R packages
 - have to be installed manually in the SAIL gateway
 - Possibility to open a single connection to a CRAN mirror
- Computing power
 - SQL uses computing power of Blue C replacement servers
 - R only has remote desktop properties (equals to 1 core of a Xeon 5550@2.67 GHz processor, with allocated memory of 2GB RAM per user)
 - There are plans to install R on a separate, very powerful server (a server each per statistics package: SPSS, STATA, R)

Connecting to SAIL with RODBC

- 1) Installation of ODBC driver
- 2) Installation of package RODBC in R
- 3) Start RODBC

library (RODBC)

4) Connect to SAIL (makes table views available)

channel <- odbcConnect("PR_SAIL")</pre>

5) Set up the WORKTMPT environment

odbcQuery(channel,"SET CURRENT SCHEMA = WORKTMPT")

Querying SAIL from R

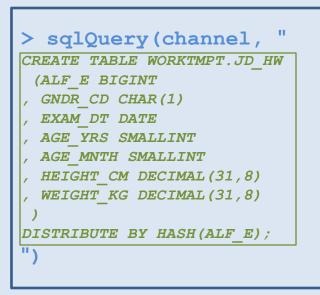
Run a Query

hw.table <- sqlQuery(channel, "		
SELECT DISTINCT a.ALF_E		
, a.GNDR_CD		
, b.EXAM_DT		
, TIMESTAMPDIFF(256, CHAR(TIMESTAMP_ISO(b.EXAM_DT) - TIMESTAMP_ISO(a.WOB)))		
as AGE_YRS		
, TIMESTAMPDIFF(64, CHAR(TIMESTAMP_ISO(b.EXAM_DT) - TIMESTAMP_ISO(a.WOB)))		
as AGE_MNTH		
, b.HEIGHT_CM		
, b.WEIGHT_KG		
FROM WORKTMPT.JD_WECC_SUBSET_2 a		
JOIN SAILCHDHV. EXAM b		
$ON a.CHILD_ID_E = b.CHILD_ID_E$		
WHERE TIMESTAMPDIFF(64, CHAR(TIMESTAMP_ISO(b.EXAM_DT) -		
$TIMESTAMP_{ISO}(a.WOB))) >= 0$		
AND (HEIGHT_CM IS NOT NULL AND WEIGHT_KG IS NOT NULL)		
AND GNDR_CD IN ('1', '2')		
ORDER BY a.ALF_E, b.EXAM_DT;		

Data retrieval: R: 1:26 min, *DB2 command line: 0:41 min*, *WinSQL: 3:32 min* 1,842,820 rows, 7 columns \rightarrow 602,975 individual children

Querying SAIL from SQL script in R

All SQL scripts have to be reviewed before data can be requested out of the gateway. It therefore makes sense to keep SQL scripts as separate files.


Run a query from an SQL script

```
con <- file("hwcode.sql")
sql <- readLines(con)
sqlQuery(channel, paste(sql, collapse=" "))
close(con)
unlink("hwcode.sql")</pre>
```


Create table in SAIL using SQL

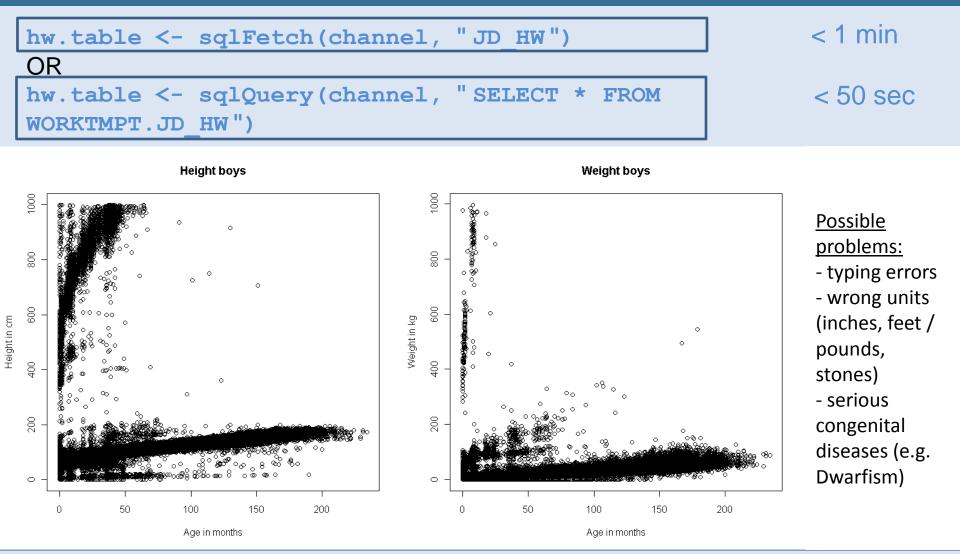
Create table

Create and populate table: R: 30 sec, *WinSQL: 11 sec*

Populate table

```
> sqlQuery(channel, "
INSERT INTO WORKTMPT.JD HW (
SELECT DISTINCT a.ALF E
      , a.GNDR CD
      , b.EXAM DT
      , TIMESTAMPDIFF (256,
CHAR (TIMESTAMP ISO (b. EXAM DT) -
TIMESTAMP ISO(a.WOB))) as AGE YRS
      , TIMESTAMPDIFF(64,
CHAR (TIMESTAMP ISO (b. EXAM DT) -
TIMESTAMP ISO(a.WOB))) as AGE MNTH
      , b.HEIGHT CM
      , b.WEIGHT KG
      FROM WORKTMPT.JD WECC SUBSET 2 a
      JOIN SAILCHDHV. EXAM b
      ON a. CHILD ID E = b. CHILD ID E
      WHERE TIMESTAMPDIFF (64,
CHAR (TIMESTAMP ISO (b. EXAM DT) -
      TIMESTAMP ISO(a.WOB))) >= 0
      AND (HEIGHT CM IS NOT NULL AND WEIGHT KG
IS NOT NULL)
      AND GNDR CD IN ('1', '2')
      ORDER BY a.ALF E, b.EXAM DT;
11
```


Append data to SAIL table


sqlQuery(channel, "CREATE INDEX WORKTMPT.JD_HW1_01 ON WORKTMPT.JD_HW (ALF_E)") sqlQuery(channel, "ALTER TABLE WORKTMPT.JD_HW ADD COLUMN TEST CHAR(1)")

DB2 commands, which restructure the table (such as *reorg table*, *runstats*) will have to be run separately.

```
system("db2 connect to PR_SAIL user xxx using xxx")
system("db2 reorg table WORKTMPT.JD_HW")
system("db2 runstats on table WORKTMPT.JD_HW with distribution
    and detailed indexes all")
system("db2 quit")
```

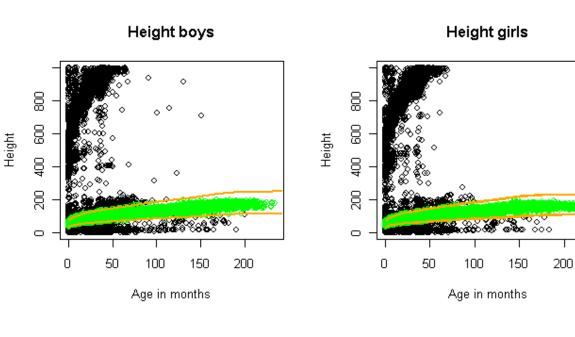

Investigating raw data

Swansea University Prifysgol Abertawe

Removing impossible values

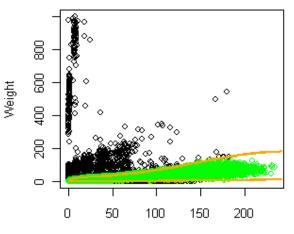
Combined heights

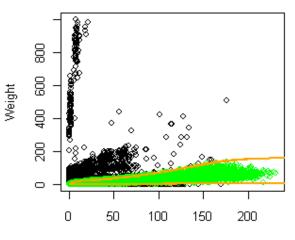
before	after
1,842,820	1,795,606


Both height & weights 1,764,728 (96% of data)

Combined weights

before	after
1,842,820	1,792,063


Filtering data against height and weight limits in R can be very time consuming **BUT** will be very fast in SQL on the supercomputer.



Weight boys

Weight girls

Age in months

Age in months

Challenges when working with R and SAIL – PART 2

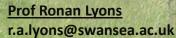
- Saving data back to SAIL (sqlSave)
 - can be slow
 - saving 1.7 million rows of data takes 2.5 hours (fast=T is 14 minutes quicker)
 - might need special attention for very large tables
 running out of internal memory or connection is timing out
 - might need special attention to formatting of columns (e.g., varTypes=c(EXAM_DT="Date"), decimals will be saved as double)
- Best option to adhere with SAIL formatting conventions
 - create table with sqlQuery and then use sqlSave(..., rownames=F, fast=T, append=T)

- R can successfully be used as a effective data processing & querying tool with SAIL
- R has added benefits, such as
 - > evaluating data in the same application
 - automating queries
 - ➤ running DB2 commands over the command line
- When importing data from SAIL into the gateway the performance is dramatically reduced (need for separate, more powerful server)

Craig Cerrig-gleisiad, Brecon Beacons, South Wales SN 963 218 GB grid

Thank you!

Dr Joanne Demmler j.demmler@swansea.ac.uk



a.ac.uk Miss Caroline Brooks c.brooks@swansea.ac.uk

<u>Any queries about SAIL</u> hiru@swansea.ac.uk

Dr Sarah Rodgers s.e.rodgers@swansea.ac.uk

Prof Frank Dunstan DunstanFD@cf.ac.uk

Mr Simon Ellwood-Thompson simon@chi.swan.ac.uk r.a.lyons@swansea.ac.ul

<u>Mr Rohan DSilva</u> r.dsilva@swansea.ac.uk