A mosaic Sampler

Randall Pruim, Calvin College
Taking Advantage of Formulas – Numerical Summaries

> mean(age, data=HELP)

[1] 35.7

> mean(age ~ sex, data=HELP)

 sex S N Missing
1 female 36.3 107 0
2 male 35.5 346 0

> sd(age ~ sex + homeless, data=HELP)

 sex homeless S N Missing
1 female homeless 6.66 40 0
2 male homeless 8.61 169 0
3 female housed 8.13 67 0
4 male housed 6.71 177 0

Also works for \texttt{var()}, \texttt{median()}, \texttt{max()}, \texttt{min()}, \texttt{IQR()}, \texttt{sum()}, \texttt{prop()}, \texttt{count()}
Taking Advantage of Formulas – Testing

> faithful$long <- faithful$eruptions > 3
> binom.test(~long, faithful)

Exact binomial test

data: faithful$long
number of successes = 175, number of trials = 272,
p-value = 2.609e-06
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
 0.583 0.700
sample estimates:
probability of success
 0.643

These also work:

> binom.test(faithful$long)
> binom.test(faithful$eruptions > 3)
> prop.test(faithful$eruptions > 3)
R’s output can sometimes be overly verbose for beginners.

```r
> interval( t.test( age~sex , data=HELP ) )
mean in group female  mean in group male
  36.25            35.47
lower       upper
  -0.88           2.45
```

```r
> pval( t.test( age~sex , data=HELP ) )
p.value
  0.354
```

(Remember this p-value for later.)
Xtra Output

Other times, it is too terse.

```r
> xchisq.test( xtabs(~sex + substance, data=HELP) )

Pearson's Chi-squared test

data: xtabs(~sex + substance, data = HELP)
X-squared = 2.03, df = 2, p-value = 0.3631

36.00  41.00  30.00
( 41.81) ( 35.90) ( 29.29)
[0.8068] [0.7236] [0.0173]
<-0.898> < 0.851> < 0.131>

141.00 111.00  94.00
(135.19) (116.10) ( 94.71)
[0.2495] [0.2238] [0.0053]
< 0.500> <-0.473> <-0.073>

key:
 observed
(expected)
[contribution to X-squared]
<residual>
```
> xhistogram(~age , data=HELP, fit='normal',
+ groups = age > 30)

Other features:

- Easy horizontal and vertical reference lines.
- Uses `fitdistr` from `MASS` for fitting.
> xpnorm(10, mean = 8, sd = 1.23)

If $X \sim N(8,1.23)$, then

\[
P(X \leq 10) = P(Z \leq 1.626) = 0.948 \]
\[
P(X > 10) = P(Z > 1.626) = 0.052
\]

[1] 0.948
Tossing Coins

> rflip(10)

Flipping 10 coins [Prob(Heads) = 0.5] ...

H T T H H H H H T H

Result: 7 heads.

This can be used for simulations early in the course, before students know what a binomial distribution is. We just need a way to replicate the coin tossing easily.
Tossing Coins

> rflip(10)
Flipping 10 coins [Prob(Heads) = 0.5] ...

T T T T H T T H H H

> x <- do(100) * rflip(10); head(x, 2)

 n heads tails
1 10 2 8
2 10 5 5

> dotPlot(~heads, data = x, breaks=seq(-0.5, 10.5, by=1))
do()ing the mosaic shuffle()

> do(1) * lm(age ~ sex, HELP)

```
  Intercept sexmale sigma r-squared
1   36.3  -0.784  7.71  0.00187
```

> null.dist <- do(1000) * lm(age ~ shuffle(sex), HELP)
> head(null.dist, 1)

```
  Intercept sexmale sigma r-squared
1   35.3   0.452  7.72  0.000621
```

> with(null.dist, perctable(abs(sexmale) > 0.784))

```
  FALSE  TRUE
62.3  37.7
```
Data is a Distribution, Too

We have implemented functions paralleling \texttt{rnorm()}, \texttt{pnorm()}, and \texttt{qnorm()} for data distributions.

\begin{verbatim}
> rdata(10, HELP$age)
 [1] 21 36 41 33 36 21 38 47 28 21
> pdata(30, HELP$age)
[1] 0.256
> qdata(.50, HELP$age)
50%
 35
\end{verbatim}
Calculus

Differentiation:

```r
> f <- D(A * sin(x + B) ~ x,
+       A = 1, B = 0)
```

```r
> f( pi )
[1] -1
```

```r
> f( pi, A=3, B=pi )
[1] 3
```

```r
> randx <- runif(4, -pi, pi)
```

```r
> f(randx) - cos(randx)
[1] 0 0 0 0
```

Anti-differentiation:

```r
> F <- antiD( dnorm(x) ~ x )
> # F(0) == 0 by default
> F (randx) - pnorm(randx)
[1] -0.5 -0.5 -0.5 -0.5
```

```r
> # Using G(-Inf) == 0 gives pdf
> G <- antiD( dnorm(x) ~ x ,
+             from=-Inf)
```

```r
> G (randx) - pnorm(randx)
```

```r
> G(2)
[1] 0.977
```
But Wait, There’s More! – mosaicManip

The `mosaicManip` package takes advantage of the `manipulate` package from RStudio to provide interactive applets for Statistics and Calculus.

```r
> mhistogram(~ age | sex, data=HELP)
```

- In alpha testing now.
- Come see our poster for many more examples.
The mosaic team

R Pruim
Calvin C

D Kaplan
Macalaster C

N Horton
Smith C

JJ Alaire
RStudio

A Rich
Macalester C

You

http://www.mosaic-web.org

https://r-forge.r-project.org/projects/mosaic/
The mosaic team

R Pruim D Kaplan N Horton JJ Alaire A Rich
Calvin C Macalaster C Smith C RStudio Macalester C

http://www.mosaic-web.org
https://r-forge.r-project.org/projects/mosaic/