Using merror 2.0 to Analyze Measurement Error and Determine Calibration Curves

Richard A. Bilonick, PhD

University of Pittsburgh Dept. of Ophthalmology, School of Medicine Dept. of Biostatistics, Graduate School of Public Health

Pittsburgh, Pennsylvania USA

Calibration of Airborne PM_{2.5} Samplers

50 60

6

õ

50

9

Collocated samplers with filters that trap particles, mass concentration is measured.

	ms.conc.2	ws.conc.2	frm
1	43.6	41.0	41.2
2	23.7	21.7	24.2
3	10.0	10.8	10.6
4	11.8	11.9	12.4
5	14.1	14.9	15.4
6	12.3	12.9	14.6

Comparing Devices/Methods

- Device *i* distorts "true value" μ_i of item *j*:
 - $X_{ij} = \alpha_i + \beta_i \mu_j + \epsilon_{ij}$ with $\Pi \beta_i = 1$
 - $\mu_j \sim N(\overline{\mu}, \sigma^2)$ and $\epsilon_{ij} \sim N(0, \sigma_i^2)$
 - α_{i} and β_{i} describe bias of device i relative to μ
 - σ_i/β_i describes *imprecision* of device *i* adjusted for scale bias in order to compare devices
 - *ratios* $\beta_i / \beta_{i'}$ and *differences* $\alpha_i \alpha_{i'} \beta_i / \beta_{i'}$ are invariant calibrate device *i* as a function of device *i*'
 - Jaech (1985)

August 16, 2011

Why Naïve Regression Doesn't Work

- Regression model:
 - One set of measurements must be designated as an "independent" variable
 - The independent variable is measured without random error
 - There are TWO different regressions which one?
- In most applications:
 - Measurements for each device are responses
 - All devices have some substantial amount of random error

Deming Regression – The Catch

- Not invented by Deming but described by him
- Adcock 1878
- Errors-in-variable approach
- Catch
 - You must know the ratio of the imprecision standard deviations
 - Imprecision cannot be known independent of bias

Limitations of Bland-Altman Plots

- Paired differences X_i X_j are plotted against means (X_i + X_j)/2
- Useful if the differences are "small" (negligible) you can conclude the devices are interchangeable
- When the differences are non-negligible, there is no way to tell why - is it due to bias or imprecision or some combination?
- Statistical analysis would need to make some very strong assumptions without any evidence

merror Version 2 Functions

- merror.pairs summary descriptive pairwise plots with diagonal line (no bias model)
- ncb.od implements the simple measurement error model and uses maximum likelihood to estimate the bias and imprecision parameters
- lrt performs the likelihood ratio test to test whether there is a scale bias (βs differ)
- cplot plots the calibration curve for devices i and j

Airborne Particulate Measurements

- Mass concentration of fine airborne particles less than 2.5 microns in diameter (PM_{2.5}) – 77 complete sets
- Filters used to capture particles then weighed
- Three *collocated* devices but 5 sets of measurements
- Samplers 1 & 2 had two filters each (MS and WS)
- FRM = Federal Reference Method sampler
- Stuebenville Comprehensive Air Monitoring Program (SCAMP)

Non-constant Bias Model - ncb.od

> round(ncb.od(sqrt(pm2.5)\$sigma.table,3)[,c(1,2,5,6,10,11,12)]

	n	sigma	alpha.ncb	beta	lb	ub	bias.adj.sigma
ms.conc.l ws.conc.l	77 77	0.136 0.157	0.097 0.037	0.973 0.984	0.107 0.127	0.188 0.205	0.140 0.159
ms.conc.2 ws.conc.2	77 77	0.290 0.276	0.047 0.092	0.973 0.964	0.246	0.356 0.339	0.299 0.286
frm	77	0.289	-0.306	1.113	0.245	0.352	0.260
Process	77	1.239	NA	NA	1.069	1.472	NA

Likelihood Ratio Test for Scale Bias Using lrt

```
> lrt(sqrt(pm2.5))$p.value
[1] 0.0002276429
```

> lrt(sqrt(pm2.5[,1:4]))\$p.value
[1] 0.9966233

Samplers 1 & 2 have same units but differ from FRM.

> cplot(sqrt(pm2.5),1,5)

> cplot(sqrt(pm2.5),1,5,regress=TRUE)

Make Calibration Curve Using cplot

Calibration Curve: ms.conc.1 = 0.364 + 0.875 frm and frm = -0.416 + 1.143 ms.conc.1 Scale Adjusted Imprecision SDs - ms.conc.1: 0.14 - frm: 0.26

Regression lines are not calibration lines and are for comparison only.

Plans for the Future – Version 3

- Replace current code for ncb.od with code using OpenMx
 - Will still be easy for researchers to use
 - Will allow missing values but must have some complete sets
 - Will provide confidence intervals for most important functions of parameters (beta ratios, scale-adjusted imprecision SD's and their ratios)

References

- Adcock, R. J. (1878). "A problem in least squares". The Analyst (Annals of Mathematics) 5 (2): 53–54. doi: 10.2307/2635758. JSTOR 2635758
- Bilonick, R. A. (2011). merror: Accuracy and Precision of Measurements. R package version 2.0. http://www.r-project.org
- Connell, D. P., Withum, J. A., Winter, S. E., Statnick, R. M., Bilonick, R. A. (2005) The Steubenville Comprehensive Air Monitoring Program (SCAMP): overview and statistical considerations. *J. Air & Waste Manage. Assoc.* 55:467-480.
- Jaech, J. L. (1985) Statistical Analysis of Measurement Errors, Wiley, New York.